集成逻辑推理与概率链图:理论、学习与比较
1. 链图推理与概率计算示例
在链图推理中,我们可以通过具体的例子来理解概率的计算过程。例如,我们考虑计算 $P(I(t) | B(t))$ 的概率。这个概率可以通过 $P(I(t)∧B(t))$ 除以 $P(B(t))$ 得到。假设通过计算 $I(t) ∧B(t)$ 的最小解释,我们得到 $P(I(t) ∧B(t)) = 4.5/Z ≈0.04$,而 $P(B(t))$ 的计算在之前的示例中已给出为 $0.24$,那么 $P(I(t) | B(t)) ≈0.04 / 0.24 ≈0.16$。需要注意的是,$I(t)$ 的先验概率为 $0.1$,这表明证据 $B(t)$ 增加了患流感的概率。
2. 链图与链逻辑的形式关系
为了简化讨论,我们主要关注具有二元变量的链图,即常量集合为 ${t, f}$,不过该理论可推广到任意元数。互补常量用横杆表示,例如 $\overline{t} = f$ 和 $\overline{f} = t$。
从链图 $G$ 到链逻辑理论 $T$ 的转换过程如下:
- 引入谓词和权重声明 :为每个势函数 $\phi_M$ 引入相应的谓词 $\phi_M$,并定义权重声明 $\phi_M(c_0, \ldots, c_n) : w$,其中 $w$ 是当 $\phi_M(X_M = (c_0, \ldots, c_n))$ 时的值,这里 $(c_0, \ldots, c_n)$ 是 $X_M$ 的所有可能实例化。
- 建模链图结构 :对于链图 $G$ 中的每个顶点 $v$,对于 $G$ 的每个组件 $C$,存在一
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



