拦截导弹问题

某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统,但是这种拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭,由于该系统还在试用阶段。所以一套系统有可能不能拦截所有的导弹。

        输入导弹依次飞来的高度(雷达给出的高度不大于30000的正整数)。计算要拦截所有导弹最小需要配备多少套这种导弹拦截系统。

输入

n颗依次飞来的高度(1<=n<=1000)

输出

要拦截所有导弹最小配备的系统数k

样例

样例输入1
389 207 155 300 299 170 158 65
样例输出1
2

代码

#include <bits/stdc++.h>
using namespace std;
int n,p;
int a[100005],k,l[100005];
int main()
{
	while(cin >> a[++n]);
	k=1;
	l[1]=a[1];
	for(int i=2;i<=n;i++)
	{
		p=0;
		for(int j=1;j<=k;j++)
			if(l[j]>=a[i])
			{
				if(p==0)
					p=j;
				else
					if(l[j]<l[p])
						p=j;
			}
		if(p)
			l[p]=a[i];	
		else
			l[++k]=a[i];
	}
	cout << k << endl; 
	return 0;
}

 

拦截导弹问题,也称为“拦截导弹游戏”或“拦截导弹防御系统问题”,是一个经典的动态规划问题问题描述: 有一座山,山上有一些导弹在不同的高度上飞行,你需要设计一套导弹拦截系统,使得拦截导弹的代价最小。 假设你可以部署一些导弹拦截器,每个拦截器能够拦截一定高度范围内的导弹。拦截器的部署代价与其拦截高度范围成正比,也就是说,拦截范围越大,部署代价越高。 你需要设计一套拦截系统,使得拦截代价最小,并能够完全拦截所有的导弹。 问题分析: 这个问题可以用动态规划来解决。我们可以定义一个状态 $f(i)$ 表示在第 $i$ 个导弹高度处放置拦截器所需的最小代价。则最终的答案就是 $f(n)$,其中 $n$ 表示导弹的数量。 接下来考虑如何求解状态转移方程。假设当前在第 $i$ 个导弹高度处放置一个拦截器,则前面所有高度小于 $i$ 的导弹都必须被拦截。因此,我们可以考虑将这些导弹按照高度从大到小排序,然后依次考虑每个导弹被拦截的情况。 对于第 $i$ 个导弹,我们需要考虑它是否被拦截。如果它被拦截,则拦截器的范围必须包括这个导弹的高度;否则,我们可以不用在这个高度处放置拦截器。因此,状态转移方程可以表示为: $$ f(i) = \begin{cases} \min\limits_{j=1}^{i-1}\{f(j) + c(i,j)\},&\text{如果第 }i\text{ 个导弹被拦截}\\ f(i-1),&\text{如果第 }i\text{ 个导弹不被拦截} \end{cases} $$ 其中 $c(i,j)$ 表示在第 $j$ 个导弹高度处放置一个拦截器,可以拦截第 $i$ 个导弹的代价。显然,$c(i,j)$ 可以通过计算高度差来计算,即 $c(i,j) = h_j - h_i$,其中 $h_i$ 表示第 $i$ 个导弹的高度。 最终的答案即为 $f(n)$,表示在第 $n$ 个导弹高度处放置拦截器的最小代价。 代码实现: 下面是拦截导弹问题的代码实现,时间复杂度为 $O(n^2)$: ```python def missile_defense_system(heights): n = len(heights) f = [float('inf')] * (n + 1) f[0] = 0 for i in range(1, n + 1): for j in range(i): cost = heights[j] - heights[i - 1] if cost < 0: continue if f[j] + cost < f[i]: f[i] = f[j] + cost return f[n] ``` 其中,`heights` 表示导弹的高度列表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值