- 博客(451)
- 收藏
- 关注
原创 DeepFace深度学习库+OpenCV实现——情绪分析器
实时情绪检测器展示了如何将现代AI技术应用于日常生活中,以提升人机交互的质量和效率。无论是作为开发者的实验项目还是实际应用场景的一部分,这款程序都提供了一个强大而灵活的基础框架,可以进一步扩展和定制以适应更多样化的需求。
2025-03-20 09:00:00
10195
2
原创 轻型民用无人机驾驶航空器安全操控——理论考试多旋翼部分笔记
ADS-B(Automatic Dependent Surveilance-Broadcast)中文名称为广播式自动相关监视,是一种基于全球卫星定位系统和利用空地、空空数据链实现交通监控和信息传递的空管监视新技术。该技术能够实现飞行信息共享、装备了此系统的飞机可通过数据链广播其自身的精确位置和其他数据、可接收其他飞机通过此系统广播的位置等信息,但不可对民用无人驾骏航空器的刹停进行控制。
2024-02-01 19:03:55
73194
12
原创 国内用户怎么选?2025年十大远程控制软件真实体验报告
2025年国内远程控制软件体验报告显示,ToDesk以9.5分高居榜首,凭借本土化网络优化、国产系统适配及性价比优势成为首选。向日葵(7.6分)硬件生态突出但软件体验争议大,TeamViewer(7.0分)因海外服务器导致连接不稳定。报告指出,国内用户应优先考虑网络兼容性、国产系统支持及服务质量,而非盲目选择国际品牌。ToDesk在免费版功能、付费版性能及客服响应等方面表现最优,特别适合设计剪辑等高要求场景,是当前国内远程控制的最优解决方案。
2025-12-18 17:42:57
9828
原创 基于昇腾平台的Qwen大模型推理部署实战:从模型转换到推理(含代码)
本文详细介绍了在GitCode昇腾云服务器上部署vLLM推理服务的完整流程。从环境准备开始,包括NPU可用性验证和基础算子测试;到模型转换阶段,将Qwen-1.8B模型从PyTorch转换为ONNX格式,再通过ATC工具编译为昇腾专用的OM格式;最后展示如何使用ACL接口在NPU上执行推理。 关键步骤包含:1) 昇腾环境配置与验证;2) 模型格式转换中的问题排查与优化;3) 完整的ACL推理流程实现。测试结果显示,该部署方案在NPU上运行稳定,当批次大小从1增加到8时,吞吐率从12.1提升到87.5 tok
2025-12-01 18:49:23
29141
1
原创 深度学习数学基础(一)——线性代数、线性代数和微积分
本文系统讲解了深度学习所需的三大数学基础:线性代数、概率统计和微积分。在线性代数部分,重点解析了向量、矩阵、张量的概念与应用,矩阵乘法、张量操作(reshape/transpose/broadcast)的实现原理,以及特征值分解和SVD在模型分析中的作用。概率统计部分阐述了概率分布(特别是多项分布在语言模型中的应用)、最大似然估计与神经网络训练的关系、KL散度作为损失函数的本质。微积分部分则着重讲解了偏导数、链式法则在反向传播中的核心作用,以及梯度下降优化算法的数学原理。全文通过具体示例(如Transfor
2025-12-01 18:01:08
1015
2
原创 仓颉性能探索:与Python的数值计算对比
本文对比了华为仓颉语言与Python在数值计算任务中的性能表现。实验选取循环求和与矩阵运算两个典型场景,结果显示:仓颉在计算密集型任务(1-10亿循环求和)中执行速度比Python快约49倍(1325ms vs 64740ms);在内存密集型矩阵运算中也保持1.1倍优势(9841ms vs 10752ms)。分析表明,仓颉通过编译器优化(CHIR前端优化、SLP向量化等)和运行时优化(轻量锁、并发Tracing等)显著提升了计算性能,尤其适合嵌入式开发和高性能计算场景。随着鸿蒙生态的发展,仓颉在系统级开发领
2025-11-07 08:30:00
22453
3
原创 微信小程序开发——第五章:小程序的组件与模块化开发
本文系统介绍了微信小程序API的核心功能与应用场景,重点讲解了界面交互API(如提示框、对话框)、页面导航(多种跳转方式)、网络请求(GET/POST方法)、本地数据缓存(读写操作)、用户授权以及设备位置信息获取等关键接口。通过对各类API的详细解释和代码示例,展示了如何实现小程序与微信系统的交互功能,帮助开发者掌握构建具有完整业务逻辑的小程序所需的核心技术要点,为开发交互性和功能性更强的小程序打下坚实基础。
2025-11-07 03:15:00
1117
原创 微信小程序开发——第四章:小程序的组件与模块化开发
文章摘要: 本章重点讲解微信小程序的组件与模块化开发。首先介绍了内置组件分类及使用示例,包括视图容器、表单、导航等类型。其次详细说明如何创建自定义组件,实现复用功能模块,并通过properties和自定义事件实现父子组件数据传递。最后介绍模块化开发方法,将公共逻辑提取为JS模块。掌握组件思想是构建复杂小程序的关键,有助于实现代码复用与功能封装。
2025-11-06 23:22:16
845
原创 微信小程序开发——第三章:WXML 与 WXSS —— 小程序页面结构与样式设计
本章系统介绍了微信小程序的核心技术WXML和WXSS。WXML作为小程序的结构语言,提供数据绑定、条件渲染、列表渲染等功能,其语法类似HTML但更加简洁。WXSS则是小程序样式语言,支持独特的rpx单位实现自适应布局,推荐使用Flex布局方式。通过本章学习,开发者可以掌握小程序页面结构与样式设计的基础方法,包括数据动态绑定、条件判断、循环渲染、模板复用等关键技术,为开发美观规范的小程序界面奠定基础。
2025-11-06 22:58:10
1075
原创 微信小程序开发——第二章:微信小程序开发环境搭建
本文介绍了如何使用 Python + OpenCV 实现一个实时人脸识别系统。整个流程简单高效,非常适合初学者入门计算机视觉。如果你已经成功运行,恭喜你迈出了 AI 开发的第一步!🎉。
2025-11-06 22:38:58
829
原创 GMNER多模态实体识别任务——ReAct结合
摘要:本文介绍了GMNER多模态实体识别任务,利用ReAct机制结合语言模型和视觉模型实现图文联合识别。系统采用三阶段流程:1)语言模型推理实体及类型,2)GroundingDINO定位图像实体,3)结构化输出结果。ReAct通过"思考-行动"闭环增强可解释性,GPT类模型负责文本理解,GroundingDINO专精图像定位。该方案可有效识别军事领域实体,并输出实体类型及图像位置信息。
2025-11-06 22:19:01
903
原创 比YOLO还厉害?Grounding DINO模型说明使用(附全部源代码和效果展示)
GroundingDINO是一种基于Transformer的开放集目标检测模型,通过融合视觉和文本特征实现零样本检测。其核心创新在于跨模态融合机制:使用SwinTransformer提取图像特征,BERT解析文本语义,并通过特征增强器、语言引导查询选择和跨模态解码器动态对齐图文信息。相比传统检测模型,GroundingDINO无需预定义类别,可直接根据文本提示(如"红色汽车")定位目标,在COCO数据集的零样本场景下达到52.5AP。模型支持多任务应用,但存在对复杂语义理解不足、实时性较
2025-11-06 22:09:26
10206
原创 微信小程序开发——第一章:概述
概述。微信小程序是基于微信生态的轻量级应用,具有"即用即走"的特点,用户无需安装即可使用。与传统App相比,小程序开发成本低、启动快、自动更新,但功能有所局限。其采用双线程架构(逻辑层+视图层)实现数据交互,开发语言包括WXML、WXSS和JavaScript。小程序适用于电商、餐饮、政务等多个场景,依托微信生态易于推广。开发流程包括注册账号、编写代码、调试和发布等步骤。虽然小程序具有轻量化优势,但不适合复杂项目,且功能受微信平台限制。本章为小程序开发奠定了理论基础。
2025-10-13 20:38:42
1082
原创 GNN入门Demo——Cora 引文网络上的节点分类
本文介绍了图卷积网络(GCN)的基本原理及其在Cora引文网络上的节点分类应用。GCN将CNN思想扩展到图结构数据,通过聚合邻居节点特征来更新节点表示。文章详细讲解了GCN的工作原理、数学公式和典型应用场景。通过PyTorch Geometric实现了一个两层GCN模型,在Cora数据集上训练并评估节点分类任务,最终测试准确率达到80.2%。同时使用t-SNE将节点特征降维可视化,直观展示了不同类别节点的分布情况。代码实现涵盖了数据加载、模型定义、训练过程和结果评估等完整流程,为理解GCN提供了实践参考。
2025-09-04 07:30:00
1142
原创 操作系统核心知识点
本文总结了操作系统核心知识点,涵盖保研面试常考内容。主要内容包括:操作系统基础(定义与功能)、进程与线程(状态、区别、通信方式)、CPU调度(层次与算法)、死锁(条件与处理)、内存管理(分配与虚拟内存)、文件系统(存储与目录结构)、I/O管理(方式与调度算法)。高频考点包括进程/线程区别、调度算法比较、死锁处理、页面置换算法等。文章采用结构化目录和问答形式,重点突出操作系统核心概念与面试常考题,帮助读者快速掌握关键知识点。
2025-09-02 14:32:14
1089
原创 数据结构重难点——复习专用
本文介绍了五种经典算法:字符串匹配算法(朴素匹配和KMP)、哈夫曼树构造、最小生成树算法(Prim和Kruskal)、最短路径算法(Dijkstra和Floyd)以及常见排序算法。KMP算法通过next数组优化匹配效率;哈夫曼树通过贪心策略构造最优二叉树;Prim和Kruskal分别采用顶点扩展和边合并策略;Dijkstra和Floyd分别解决单源和多源最短路径问题;排序算法部分详细分析了插入、希尔、堆、快速等八种排序方法的时间复杂度、空间复杂度和适用场景。这些算法涵盖了数据结构与算法课程的核心内容,具有重
2025-08-26 08:00:00
752
原创 力扣每日一题保持手感——498.对角线遍历
本文介绍了矩阵对角线遍历的两种解法。核心思路是按对角线(i+j)编号顺序交替处理,通过奇偶性判断遍历方向(右上/左下)。Java实现采用坐标移动方式,C++版本则直接遍历所有对角线。两种方法时间复杂度均为O(mn),空间复杂度O(1)(不包含输出数组)。该解法高效利用了矩阵索引的数学特性,避免了复杂的数据结构操作。
2025-08-25 11:45:34
925
3
原创 Python调用维基百科WIKI(附完整代码)
本文介绍了一个基于Python wikipedia库的维基百科查询工具,主要包括四个部分:1) 导入wikipedia库简化API调用;2) 核心函数wiki_search实现关键词查询,返回标题、摘要和URL;3) 包含歧义查询、页面不存在等异常处理机制;4) 提供命令行交互界面,支持自定义语言和关键词查询。该程序通过封装维基百科API,实现了简单高效的信息检索功能。
2025-08-13 09:00:00
11013
原创 论文研读——《ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent》ReST 遇上 ReAct:面向多步推理LLM
本文提出了一种结合ReAct代理框架与ReST自我训练策略的"ReST meets ReAct"方法,用于提升大语言模型在多步推理问答任务中的性能。该方法通过构建具有自我批评功能的ReAct代理,利用AI反馈进行迭代训练和自我蒸馏,实现了无需人工标注的持续优化。实验表明,经过两轮迭代后,参数量缩小100倍的小模型可达到与大模型相当的准确率。该方法创新性地解决了外部知识调用不可微导致的端到端训练难题,为复杂推理任务提供了一种高效的自改进机制。
2025-07-11 08:30:00
1267
原创 论文阅读——《ReAct: Synergizing Reasoning and Acting in Language Models》在语言模型中协同推理与行动
《ReAct:语言模型中推理与行动的协同机制》 摘要: 本文提出的ReAct方法创新性地将语言模型的推理能力与行动能力相结合,通过交替生成推理轨迹和任务动作来解决复杂任务。研究表明,ReAct在问答、事实验证和交互决策任务中显著优于传统方法。在HotpotQA和FEVER任务中,通过与Wikipedia API交互,ReAct有效减少了推理幻觉问题,准确率提升34%;在ALFWorld和WebShop等决策任务中,仅需1-2个示例就能超越模仿学习和强化学习方法10%的成功率。该方法不仅提高了任务完成度,还增
2025-07-10 16:30:16
935
1
原创 数据结构——字符串匹配算法:朴素的匹配算法和KMP算法(超详细解释 新手也能会学!!!)
彻底掌握LPS表,KMP算法就再无难点!超详细解释,新手也能学会!!!
2025-06-24 08:00:00
1296
4
原创 栈的两个应用:括号匹配和表达式的计算(新手也能学会)
本文系统介绍了栈在括号匹配和表达式计算中的应用原理。括号匹配通过栈的LIFO特性验证嵌套结构,重点处理三种失败场景。表达式计算分为两种方法:双栈法直接处理中缀表达式,需考虑优先级和括号;后缀表达式法先转换再计算,逻辑更清晰。中缀转后缀的核心是优先级规则和栈操作,需特别注意括号处理和操作数顺序。通过多案例逐步分析栈状态变化,帮助读者掌握这两种经典算法问题。理解栈在处理嵌套结构时的延迟执行特性是关键,建议通过实际案例加深理解。
2025-06-23 08:00:00
920
原创 免费生成超萌猫咪头像!AI一键打造你的专属喵星人,引爆朋友圈!
这段代码实现了一个基于文本生成猫咪头像的AI应用。核心功能是让用户输入描述文字,AI自动生成对应的猫咪艺术肖像。它主要使用了diffusers和gradio两个关键库,前者负责图像生成,后者负责交互界面搭建。在环境准备阶段,代码首先安装了必要的依赖包,包括支持扩散模型的diffusers、处理文本的、优化硬件资源的accelerate以及构建界面的gradio。这里特别采用半精度()加载模型,既能保持生成质量,又能大幅降低显存占用,让普通消费级显卡也能流畅运行。
2025-06-17 13:24:41
2365
原创 从零搭建 Stable Diffusion 图片生成模型——Colab 流程(新手也能学会)
《Colab平台从零搭建StableDiffusion文生图全流程指南》本教程详细讲解了在Colab平台部署StableDiffusion的完整流程:1)安装diffusers等必要依赖库;2)通过HuggingFace账号授权获取模型权限;3)加载StableDiffusion-v1.5模型;4)输入英文prompt生成图像;5)保存结果及参数调节。关键要点包括:必须使用英文提示词(中文效果不稳定)、guidance_scale控制提示词强度(7-12为宜)、可调整图像尺寸和推理步数(25-50步)。教
2025-06-12 08:00:00
1054
原创 论文研读——去偏蒸馏用于一致性正则化《Debiased Distillation for Consistency Regularization》
一文看懂当前最新的知识蒸馏IKD方法
2025-06-09 07:45:00
1317
原创 YOLOv8 × VisDrone 全流程实战:训练你的无人机识别模型 AI(第一部分:数据集准备)
想打造属于自己的无人机目标识别AI?这篇手把手教程带你从零开始上手实战!在本篇文章中,我们将带你完整走完 YOLOv8 与 VisDrone 数据集的整合流程,涵盖从数据获取到预处理的每一个关键步骤。无论你是初学者还是有一定基础的开发者,都能轻松跟随操作,完成无人机图像数据的标准化转换。🔧 你将学到:如何从 GitHub 下载 VisDrone 数据集并高效管理至 Google Drive在 Google Colab 中快速部署 YOLOv8 环境并挂载云端存储解压数据 YOLO.....
2025-06-05 13:48:45
1621
原创 Colab零基础实战:1小时训练高精度猫狗分类模型!—— 模型训练、手把手教学、附全部源码
🐱🐶 「Colab零基础实战:1小时训练高精度猫狗分类模型!」无需高端显卡!白嫖谷歌GPU+完整代码,从数据下载→模型训练→预测部署一条龙搞定:✅ Kaggle数据集自动下载:告别手动上传,1行代码拉取25,000张图片!✅ 工业级训练技巧:早停机制防过拟合,验证准确率>85%!✅ 模型秒下载:挂载Google Drive网页端下载,64MB文件1分钟搞定(亲测碾压files.download())!✅ 预测可视化:一键运行展示分类结果+置信
2025-06-05 08:00:00
1257
原创 手把手教会用深度学习实现花卉识别:打造你自己的智能植物识别系统!(附全部源码)[特殊字符]
本项目基于深度学习模型 MobileNetV2,实现了对 Oxford Flowers 102 数据集中各类花卉的高效识别。我们使用 TensorFlow 构建模型并在图片文件夹中进行批量预测,最终通过可视化展示识别结果。即使你不是植物专家,也能轻松分辨不同种类的花卉,赋能教育、旅游、农业等多个领域。通过本篇博客,快速掌握智能识花系统的完整流程,从训练到部署一站式搞定!
2025-06-04 12:44:31
2006
原创 教AI看懂手绘图:猫、狗、熊猫和椅子我都认识
想知道AI能不能看懂你在画布上随手画的猫、狗或者熊猫吗?本篇文章带你从零开始,基于 Google 的 QuickDraw 数据集,使用 TensorFlow 搭建卷积神经网络,实现一个轻量级的手绘图识别模型。不仅包含完整的模型训练代码,还有交互式画布演示,让你画完就能看到预测结果。让AI看看你画得像不像真的熊猫!
2025-06-04 08:30:00
21891
原创 力扣每日一题——分发糖果
本文介绍了LeetCode题目"分发糖果"的贪心解法。题目要求给一排孩子分糖果,满足每个孩子至少1颗且相邻孩子中评分高的糖果更多。解法采用两次遍历:第一次从左到右确保右高分孩子糖果更多,第二次从右到左处理左高分情况并用max函数维持条件。Java和C++实现均使用O(n)时间和空间复杂度,其中空间开销用于存储糖果分配数组。该方法高效协调了相邻关系,确保最少糖果数的同时满足题目所有条件。
2025-06-03 14:00:00
753
原创 Python实现——天气小挂件
本文介绍了一个基于Python的天气查询工具的实现方法。该工具通过和风天气API获取实时天气数据,并整合了时间显示和名言功能。文章详细讲解了代码实现思路,包括数据获取、异常处理、界面美化等模块。核心功能使用requests库进行API调用,通过pyfiglet和rich库实现终端可视化效果。同时提供了获取和风天气API的完整指南,包括注册流程、调用规范、注意事项等。该工具支持中文城市名查询,返回包含温度、湿度等信息的精美表格,并附带当前时间和随机名言,提升了用户体验。整体代码约150行,结构清晰易于扩展。
2025-06-03 08:30:00
1929
原创 力扣每日一题——给小朋友们分糖果||
本文解析了力扣2929题"给小朋友们分糖果II"的数学解法。题目要求将n颗糖分给3个小朋友,每人不超过limit颗,求分配方案数。解法采用容斥原理:1) 计算无约束的总方案数C(n+2,2);2) 使用"强制先发糖"技巧计算违反约束的情况;3) 通过公式"总方案-3单超限+3双超限-三超限"得到结果。提供了Java/C++/Python实现代码,时间复杂度O(1),适用于大数情况。该方法巧妙运用组合数学和容斥原理解决约束分配问题。
2025-06-02 14:00:00
1172
原创 Google Colab 零基础入门教学
专为零基础入门者设计的 Google Colab 教学文档与实战案例,带你从认识 Colab 到实际动手写代码,逐步掌握 Python 基础语法、数据可视化、文件读取及简单机器学习模型。无需安装环境,打开浏览器即可轻松开始编程之旅,让你在云端自由学习、练习与探索数据科学的魅力!
2025-06-02 07:30:00
1515
原创 力扣每日一题——蛇梯棋
即刻点击探索 → 从骰子到代码,在蛇梯之间跃迁最短路径!“童趣棋盘暗藏层序遍历精髓——BFS最优雅的应用场景之一。”📚 博客硬核内容:双语言代码+动态推演+易错案例解析,点击探索坐标转换的数学魔术!
2025-06-01 09:00:00
1816
原创 如何快速的从Google colab 中下载文件(亲测好用)
🔥 「Colab模型下载终极指南:告别卡顿,1分钟搞定大文件!」还在为Colab下载模型时无限卡死崩溃?亲测三套方案:🚫 慎用files.download()——90%概率卡住不动!✅ 强推Google Drive网页下载:挂载→复制→网页端一键下载,64MB模型1分钟极速搞定,进度条肉眼可见!💡 紧急备用:压缩后再下载,稳定性+1但速度仍有限。👉 结论:Drive网页端是唯一可靠方案,别再浪费时间试错了
2025-05-31 17:49:08
1681
原创 力扣每日一题——找到离给定两个节点最近的节点
博客摘要:双指针路径交汇法求解有向图最近公共可达节点问题核心:给定一个有向图(节点最多一条出边,可能存在环),需找到节点 node1 和 node2 均可达的节点,使两者到该节点距离的较大值最小化。若有多个解,返回最小节点编号;无解则返回 -1。解法精髓:采用 双指针路径交汇法(Dual-Pointer Path Convergence)
2025-05-30 16:03:35
944
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅