数学建模
脑汁
这个作者很懒,什么都没留下…
展开
-
数学建模--灰色预测
写在前面:笔记为自行整理,内容出自课程《数学建模学习交流》,主讲人:清风灰色预测是对既含有已知信息又含有不确定信息的系统进行预测,就是对在一定范围内变化的、与时间有关的灰色过程进行预测。灰色预测对原始数据进行生成处理来寻找系统变动的规律,并生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。GM(1,1)原理设x(0)=(x(0)(1),x(0)(2),...,x(0)(n))x^{(0)}=(x^{(0)}(1),x^{(0)}(2),...,x^{原创 2020-07-24 21:06:34 · 303 阅读 · 0 评论 -
数学建模--主成分分析
步骤原创 2020-07-07 11:33:29 · 242 阅读 · 0 评论 -
数学建模--分类模型
逻辑回归import pandas as pdimport numpy as npdata = pd.read_excel('fruit_data.xlsx', index_col="ID")data.head() mass width height color_score fruit_name ID原创 2020-05-12 13:37:20 · 1777 阅读 · 0 评论 -
数学建模--数学规划模型Python实现
线性规划scipy.optimize.linprogfrom scipy.optimize import linprog一般形式官方文档:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html例一:c = [-5, -4, -6] # 目标函数系数A = [[1, -1, 1], # 不等式约束系数 [3, 2, 4], [3, 2, 0]]b = [20,原创 2020-05-11 15:14:46 · 3479 阅读 · 0 评论 -
数学建模--岭回归和Lasso回归
古典回归模型的四个假定线性假定:假定因变量和自变量之间存在线性关系严格外生性——>回归系数无偏且一致无完全多重共线性——>保证参数可估计球型扰动项岭回归惩罚函数惩罚函数法和最小二乘法或者最大似然估计类似,也是求解优化问题。假设自变量为XXX∈RPR^PRP,因变量记为YYY,回归系数记为β\betaβ,截距项为β0\beta_0β0。目标函数的一般形式为其中L(β...原创 2020-05-03 15:52:44 · 1559 阅读 · 0 评论 -
数学建模--图论最短路径,Python的Networkx包实现
import networkx as nximport matplotlib.pyplot as plt第一种方式画图# 节点名称nodes = [0,1,2,3,4,5,6,7,8]# 边列表,格式为:(节点,节点,权重)edgess = [(0,1,3), (0,7,8), (1,7,3), (1,2,8), (7,8,1), (7,6,6), (8,2,2), ...原创 2020-04-30 12:48:17 · 1829 阅读 · 2 评论 -
数学建模--相关性分析及Python实现
写在前面:笔记为自行整理,内容出自课程《数学建模学习交流》,主讲人:清风相关系数只是用来衡量两个变量线性相关程度的指标,因此,使用相关系数衡量相关性前需要确认变量间是线性相关的。...原创 2020-04-28 17:12:37 · 11023 阅读 · 0 评论 -
数学建模--拟合算法以及Python的三种实现方法
写在前面:笔记为自行整理,内容出自课程《数学建模学习交流》,主讲人:清风拟合与插值的区别:插值算法中,得到的多项式f(x)f(x)f(x)要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到一个确定的曲线,尽管这条曲线不能经过每一个样本点,但只要保证误差足够小即可,这就是拟合的思想。 (拟...原创 2020-04-25 12:55:43 · 2996 阅读 · 0 评论 -
数学建模--插值算法(SciPy实现)
写在前面:笔记为自行整理,内容出自课程《数学建模学习交流》,主讲人:清风目录一维插值问题插值法原理拉格朗日插值法分段插值分段三次埃尔米特(Hermite)插值一维插值问题问题如下:已经有n+1n+1n+1个节点(xi,yi)(i=0,1,...,n)(x_i,y_i)(i=0,1,...,n)(xi,yi)(i=0,1,...,n),其中xix_ixi互不相同,不妨设a=x0<...原创 2020-04-22 18:16:58 · 2035 阅读 · 1 评论 -
数学建模--TOPSIS代码(Python实现)
import numpy as np # 导入numpy包并将其命名为np##定义正向化的函数def positivization(x,type,i):# x:需要正向化处理的指标对应的原始向量# typ:指标类型(1:极小型,2:中间型,3:区间型)# i:正在处理的是原始矩阵的哪一列 if type == 1: #极小型 print("第",i,"列是极...原创 2020-04-19 22:58:51 · 3584 阅读 · 4 评论 -
数学建模--模糊综合评价
写在前面:笔记为自行整理,内容出自课程《数学建模学习交流》,主讲人:清风目录概述经典集合和模糊集合的基本概念概述(1) 数学归纳法和秃子悖论归纳法:当n=1n=1n=1时,某条件成立;假设n=kn=kn=k时成立,接下来验证n=k+1n=k+1n=k+1时也成立。秃子悖论:假如一个人头发茂密,那当他减少一根头发后不是秃子;假设减少kkk根不是秃子,那么减少k+1k+1k+1根也不是秃...原创 2020-04-19 12:25:48 · 1803 阅读 · 0 评论 -
数学建模--灰色关联分析
写在前面:笔记为自行整理,内容出自课程《数学建模学习交流》,主讲人:清风灰色关联分析概述一般的抽象系统,如社会系统、经济系统、农业系统、生态系统、教育系统等都包含有许多种因素,多种因素共同作用的结果决定了该系统的发展态势。人们常希望知道在众多的因素中,哪些是主要因素,哪些是次要因素;哪些因素对系统发展影响大,哪些因素对系统发展影响小;哪些因素对系统发展起推动作用需强化发展,哪些因素对系统起...原创 2020-04-13 15:21:40 · 1849 阅读 · 0 评论 -
数学建模--TOPSIS优劣解距离法
写在前面:笔记为自行整理,内容出自课程《数学建模学习交流》,主讲人:清风目录引例:TOPSIS介绍步骤总结层次分析法的一些局限有关层次分析法的内容:AHP(1) 评价的决策层不能太多,否则判断矩阵和一致矩阵差异会很大。n123456789101112131415RI000.520.891.121.261.361.411...原创 2020-04-10 18:05:43 · 3048 阅读 · 0 评论 -
数学建模--层次分析法(代码Python实现)
# A = [[1,1,4,1/3,3],# [1,1,4,1/3,3],# [1/4,1/4,1,1/3,1/2],# [3,3,3,1,3],# [1/3,1/3,2,1/3,1]]import numpy as np #导入所需包并将其命名为npdef ConsisTest(X): #函数接收一个如上述A似的矩阵#计算权重 #方...原创 2020-04-09 11:48:59 · 6098 阅读 · 0 评论 -
数学建模--层次分析法
The analytic hierarchy process(AHP)多用于评价类模型(如:选择哪种方案最好、哪位运动员表现更优秀等)。模型介绍评价类问题可以用打分解决引例:张三毕业后选择清华还是北大?已知张三最关心大学里的以下四个方面:学习氛围(0.4);就业前景(0.3);男女比例(0.2);校园景色(0.1)括号内的数值表示张三认为的重要性程度(权重),其和为1对于每个评...原创 2020-04-09 11:50:04 · 4727 阅读 · 0 评论