process terminated without establishing connection to debugger.

本文介绍了解决在使用Adobe AIR进行调试时遇到的“processterminatedwithoutestablishingconnectiontodebugger”错误的方法。主要原因是程序版本与调试器版本不匹配。解决方案包括更新项目配置文件中的命名空间,以及清理并重启ADL进程。

process terminated without establishing connection to debugger

出现的原因是由于您所装的版本比较新,而您的程序所用的版本它仍然用的是旧版本。

在您的 工程根目录中的配置文件 "projectName-app.xml"中进行修改:

application xmlns="http://ns.adobe.com/air/application/1.1">

换成:
<application xmlns="http://ns.adobe.com/air/application/1.5">

编译,通过~

如果还是不行,就打开任务管理器,把所有adl.exe的进程结束,然后重新调试,即可。

 

转载于:https://www.cnblogs.com/zhchongyao/archive/2010/01/05/1639572.html

torch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILLtorch.multiprocessing.spawn.ProcessExitedException: process 0 termin
最新发布
06-04
### torch.multiprocessing.spawn ProcessExitedException SIGKILL 问题分析与解决方案 在使用 `torch.multiprocessing.spawn` 时,如果遇到 `ProcessExitedException` 错误并且该错误与 `SIGKILL` 信号相关,通常意味着子进程在运行过程中被强制终止。以下是一些可能的原因和解决方案[^1]。 #### 1. 内存不足导致的 SIGKILL 操作系统可能会因为内存不足而发送 `SIGKILL` 信号来终止占用大量资源的进程。这种情况下,可以通过以下方法解决: - **减少每个进程的内存消耗**:检查模型大小、批量大小(batch size)以及数据加载器的配置,尝试降低这些参数以减少内存占用。 - **增加系统可用内存**:如果硬件条件允许,可以升级服务器的物理内存或启用交换分区(swap space)。 - **监控内存使用情况**:使用工具如 `htop` 或 `nvidia-smi` 来实时监控内存和显存的使用情况[^2]。 #### 2. 并行任务过多导致的资源竞争 当使用 `torch.multiprocessing.spawn` 启动多个进程时,如果并行任务过多,可能会导致资源竞争,从而触发 `SIGKILL`。可以通过以下方式优化: - **限制并发进程数**:通过设置 `num_processes` 参数控制并发进程的数量。 - **调整启动方法**:默认情况下,PyTorch 使用 `spawn` 方法启动多进程,但也可以尝试其他启动方法(如 `forkserver`),尽管这可能需要额外的代码修改[^3]。 ```python import torch.multiprocessing as mp def worker(rank, world_size): # 子进程逻辑 pass if __name__ == "__main__": world_size = 4 mp.spawn(worker, args=(world_size,), nprocs=world_size, join=True) ``` #### 3. CUDA OOM 导致的 SIGKILL 如果程序中使用了 GPU,CUDA 的 Out-of-Memory (OOM) 问题也可能导致子进程被杀死。可以通过以下方法排查和解决: - **检查显存分配**:确保每个进程分配的显存不会超出 GPU 的总显存。 - **使用 `torch.cuda.set_per_process_memory_fraction`**:限制每个进程使用的显存比例。 - **释放未使用的显存**:在适当位置调用 `torch.cuda.empty_cache()` 以释放不再使用的显存[^4]。 ```python import torch # 设置每个进程最多使用 50% 的显存 torch.cuda.set_per_process_memory_fraction(0.5, device_id) ``` #### 4. 超时机制导致的 SIGKILL 某些情况下,操作系统或管理工具可能会对长时间运行的进程实施超时策略,从而发送 `SIGKILL` 信号。可以通过以下方式避免: - **增加超时时间**:如果使用了容器化环境(如 Docker 或 Kubernetes),检查相关配置并延长超时时间。 - **定期保存检查点**:在训练过程中定期保存模型状态,以便在进程被中断后可以从最近的检查点恢复[^5]。 ```python def save_checkpoint(model, optimizer, epoch, path): torch.save({ 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'epoch': epoch }, path) def load_checkpoint(model, optimizer, path): checkpoint = torch.load(path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) return checkpoint['epoch'] ``` #### 5. 日志记录与调试 为了更好地定位问题,建议启用详细的日志记录,并捕获异常信息。可以通过以下方式实现: - **捕获异常**:在子进程中捕获 `ProcessExitedException` 并打印相关信息。 - **启用分布式调试模式**:在 PyTorch 中启用 `TORCH_DISTRIBUTED_DEBUG=INFO` 环境变量以获取更多调试信息[^6]。 ```python import os os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO' try: mp.spawn(worker, args=(world_size,), nprocs=world_size, join=True) except Exception as e: print(f"Error: {e}") ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值