自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3344)
  • 资源 (59)
  • 收藏
  • 关注

原创 LLMs之Llama3:Llama-3的简介、安装和使用方法、案例应用之详细攻略

​LLMs之Llama 3:Llama 3的简介、安装和使用方法、案例应用之详细攻略目录Llama 3的简介Llama 3的安装和使用方法Llama 3的案例应用Llama 3的简介2024年4月18日,Meta 重磅推出了Meta Llama 3,Llama 3是Meta最先进开源大型语言模型的下一代,包括具有80亿和700亿参数的预训练和指令微调的语言模型,能够支持广泛的应用场景。这一代Llama在一系列行业标准基准测试中展示了最

2024-04-20 00:15:32 22738 8

原创 AI:大模型领域最新算法SOTA核心技术要点总结(一直持续更新)、大模型实战与理论经验总结(训练优化+代码实战+前沿技术探讨+最新案例应用)、带你精细解读多篇优秀的大模型论文、AI领域各种工具产品集合

​AI:大模型领域最新算法SOTA核心技术要点总结(一直持续更新)、大模型实战与理论经验总结(训练优化+代码实战+前沿技术探讨+最新案例应用)、带你精细解读多篇优秀的大模型论文、AI领域各种工具产品集合(文本/图片/编程/办公/视频/音频/多模态类)的简介之详细攻略目录相关文章大模型领域最新算法SOTA总结

2023-04-13 23:43:22 64731 61

原创 AIGC之GPT-4:GPT-4的简介(核心原理/意义/亮点/技术点/缺点/使用建议)、使用方法、案例应用(计算能力/代码能力/看图能力等)之详细攻略

​AIGC之GPT-4:GPT-4的简介(核心原理/意义/亮点/技术点/缺点/使用建议)、使用方法、案例应用(计算能力/代码能力/看图能力等)之详细攻略目录GPT-4的简介GPT-4的使用方法GPT-4的案例应用相关文章AIGC:ChatGPT(一个里程碑式的对话聊天机器人)的简介(意义/功能/核心技术等)、使用方法(七类任务)、案例应用(提问基础性/事实性/逻辑性/创造性/开放性的问题以及编程相关)之详细攻略https://y

2023-03-15 23:28:41 44738 21

原创 DS/ML:数据科学技术之机器学习领域六大阶段最强学习路线(初步探索性数据分析EDA→数据预处理/广义的特征工程→模型训练/评估/推理→模型分析/反思/再优化→模型部署与监控→模型全流程优化)详解

DS/ML:数据科学技术之机器学习领域六大阶段最强学习路线(初步探索性数据分析EDA→数据预处理/广义的特征工程→模型训练/评估/推理→模型分析/反思/再优化→模型部署与监控→模型全流程优化)详解导读:数据科学和机器学习实战最强学习路线,博主这次花了真的是好久好久的时间(大概数不清的凌晨吧),以数据科学生命周期和机器学习工程化的视角进行了精心整理,今天终于结束了,真心不容易……希望能够对家学习数据科学和机器学习技术有所帮助。本文章是博主在数据科学和机器学习领域,先后实战过几百个应用案例之后的精心总结

2022-12-31 23:47:23 64096 8

原创 AIGC:ChatGPT(一个里程碑式的对话聊天机器人)的简介(意义/功能/核心技术等)、使用方法(七类任务)、案例应用(提问基础性/事实性/逻辑性/创造性/开放性的问题以及编程相关)之详细攻略

AIGC:ChatGPT(一个里程碑式的对话聊天机器人)的简介(意义/功能/核心技术等)、使用方法(七类任务)、案例应用(提问基础性/事实性/逻辑性/创造性/开放性的问题以及编程相关)之详细攻略目录爆火的原因:免费+好用+随时可上手+比较靠谱ChatGPT的简介ChatGPT的简介—意义、功能、核心技术、训练过程ChatGPT的简介—优缺点各方观点/评价基于ChatGPT模型的哲学思考ChatGPT模型如何对待不可知的问题——ChatGPT后期会加持WebGPTChatGPT模型是否存在创新的意识ChatG

2022-12-08 02:45:16 83446 45

原创 NLP:自然语言处理技术最强学习路线之NLP简介(岗位需求/必备技能)、早期/中期/近期应用领域(偏具体应用)、经典NLP架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装(更新中)

​NLP:自然语言处理技术最强学习路线之NLP简介(岗位需求/必备技能)、早期/中期/近期应用领域(偏具体应用)、经典NLP架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装(更新中)目录NLP自然语言处理技术最强学习路线☆☆一、自然语言处理技术的简介☆☆二、自然语言处理技术相关概念简介☆☆四、NLP具体应用领域(

2022-12-05 23:56:06 58747 10

原创 CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)、早期/中期/近期应用领域(偏具体应用)、经典CNN架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装、常用数据集、编程技巧

​CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)、早期/中期/近期应用领域(偏具体应用)、经典CNN架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装、常用数据集、编程技巧目录最新文章计算机视觉技最强学习路线☆☆一、计算机视觉的简介☆☆二、计算机视觉相关概念简介☆☆三、传统的计算机视觉技术之机器视觉/计算机图形学

2022-10-18 01:51:04 72827 20

原创 AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之总篇

一、计算机视觉技术1.1、目标检测技术实现解决财务丢失总思路1.1.1、目标检测乘客前后对比丢失的物件1.1.2、现实意义1.1.3、实现思路1.2、四个模块设计思路1.2.1、车内始末图像目标检测1.2.2、车内视频目标检测1.2.3、车内摄像头目标检测1.2.4、人脸识别验证失主二、自然语言处理技术2.1、语音识别技术实现敏感乘客自动报警总思路2.1.1、语音识别司机与乘客言语上的冲突2.1.2、重大意义2.2、四个模块设计思路。

2022-10-15 09:53:28 34658 9

原创 Python:Python语言的简介(语言特点/pyc介绍/Python版本语言兼容问题(python2 VS Python3))、安装、学习路线(数据分析/机器学习/网页爬等编程案例分析)之详细攻略

​Python:Python语言的简介(语言特点/pyc介绍/Python版本语言兼容问题(python2 VS Python3))、安装、学习路线(数据分析/机器学习/网页爬等编程案例分析)之详细攻略目录Python语言的简介Python语言IDE的安装Python语言的系统命令Python语言的学习路线Python语言的简介 自从20世纪90年代初Python语言诞生至

2022-09-14 00:43:46 48008 13

原创 Computer:少儿编程—每个人都应该学习编程,它能教你如何思考—编程入门的简介(编程语言的特点&种类&开发工具&对比人类语言)、编程应用、编程意义之详细攻略

但是,计算机不接受歧义和不确定,比如最帅的男生,如果要给出上面的指令,必须提前为计算机定义好—谁是最帅的男生,或者给定计算机可以进行量化的属性,比如身高=1、眼睛半径=2、发量=3等等。再比如,如果遇到一个使用 Excel 处理大量数据的需求,不会编程就只能买别人开发好的脚本,或者自己花大量时间做大量重复性的工作,如果学习了编程,可以更好地满足我们这些私人订制化的需求。我们日常生活中,每天都在经历条件判断,比如外面下雨了,出门就带把伞,出门快迟到了,那就赶紧跑两步,编程是一种对人的思考进行再思考的行为。

2022-09-03 11:55:28 25885 10

原创 DayDayUp:2021,再见了,无论是躺平还是内卷—愿大家改变不可接受的,接受不可改变的—心若有向往,何惧道阻且长

​DayDayUp:2021,再见了,无论是躺平还是内卷—愿大家改变不可接受的,接受不可改变的—心若有向往,何惧道阻且长!导读:2021年, 虽然全球疫情依旧持续影响,但国内疫情防控形势持续向好。今年的关键词—躺平和内卷。其实,在所有成年人的世界里,真的没有“容易”二字,心中千疮百孔,脸上风轻云淡,表面绽放笑颜,心中却有波澜。一路走来,跌跌撞撞,浑身是伤,但是我们却从没有放弃。在不知不觉中,我们也变成了更好的自己。对于我们每个人,这一年,无论是躺平还是内卷,愿大家改变不可接受的,接受不可改变的,做一个

2021-12-31 19:35:45 45365 39

原创 DayDayUp:2020,再见了,不平凡的一年,让我懂得了珍惜,让我明白了越努力越幸运

DayDayUp:2020,再见了,不平凡的一年,让我懂得了珍惜,让我明白了越努力越幸运导读:2020年的开篇,开的太意外,无论以什么样的眼光去回顾2020,它一定是载入史册的一年。突然起来的疫情,打得人们措手不及!人生的确不易,每个人都在负重前行,致敬那些可爱的人,感谢钟院士,感谢医护人员,感谢我们这这个强大的国家。2020年,太特殊,特殊的就像一场梦,无数的关键词涌入了记忆的心头:新冠,武汉,没毕业照,科比……前几天看到这样的一段话:2020年,最大的收获是一身伤,一身债,半条命、还活.

2020-12-31 17:57:50 114232 99

原创 AGI:走向通用人工智能的【哲学】之现实世界的虚拟与真实——带你回看1998年的经典影片《The Truman Show》感悟“什么是真实”

AGI:走向通用人工智能的【哲学】之现实世界的虚拟与真实——带你回看1998年的经典影片《The Truman Show》感悟“什么是真实”导读:今天写的这篇文章,完全是来自于昨天和几位好友一块聚餐,谈到了很多的AI与哲学问题,好友推荐我看Peter Weir的《The Truman Show》,花了几个小时,看完之后颇有感悟。本文章属于探讨性文章,涉及哲学问题较多,需要一定程度的知识储备。当下的人工智能还是属于弱人工智能,要想走向强人工智能,必须要解决通用人工智能的问题,要想解决通用人工智能,还是要

2020-09-20 12:16:39 122980 79

原创 DayDayUp:平均每篇文章1毛! 本博主自2020年6月1日起,如有任何问题可在博客贴吧留言或者私信博主(包括并不限于GUI软件编写、安装及编程语言中的bug、AI算法设计等),非诚勿扰!

DayDayUp:平均每篇文章1毛1! 本博主自2020年6月1日起,如有任何问题可在博客贴吧留言或者私信博主(包括并不限于GUI软件编写、安装及编程语言中的bug、AI算法设计等),非诚勿扰!导读:因为博主后台留言实在是太多太多,大多网友都是前来寻求答案或进行。同时,博主为了进一步维护粉丝群体,自2020年06月01日起,包括并不限于GUI软件编写、安装及编程语言中的bug、AI算法设计。 博主拥有多种资源,圈内大佬都有交往,如有任何问题,可在博客贴吧留言或者私信博主即可!但非诚勿扰....

2020-09-08 11:19:43 103598 30

原创 DBMS/Database:数据库管理的简介、安装(注意事项等)、学习路线(基于SQLSever深入理解SQL命令语句综合篇《初级→中级→高级》/几十项代码案例集合)之详细攻略

​DBMS/Database:数据库管理的简介、安装(注意事项等)、学习路线(基于SQLSever深入理解SQL命令语句综合篇《初级→中级→高级》/几十项代码案例集合)之详细攻略目录DBMS数据库管理的简介RDBMS数据库管理的安装RDBMS数据库管理的学习路线(基于SQLSever深入理解SQL命令语句综合篇《初级→中级→高级》/几十项代码案例集合)SQL与其它语言交互DBMS数据库

2020-07-26 11:00:31 18285 1

原创 CSDN粉丝解答:六月份第二期精选——简单bug处理、资料索取、编程系统设计等

CSDN粉丝解答:六月份第二期精选——互联网笔试编程解决、简单bug处理、编程系统设计等导读:因博主后台留言太多,各种奇葩问题都有,博主只能随机挑选几篇对粉丝的解答,放出来与大家分享哈,哈哈……博主针对粉丝提出的问题,做出及时、有效的回答,包含以下两种情况:第一种情况,当粉丝订阅博主的文章后,不仅可以浏览博主的精选文章,同时,针对每一位粉丝所提出的编程问题,博主一定会依次回答,尽最大可能去做到完美解决,直至bug消失。 第二种情况,助人为乐,手留余香,如果是学生身份,没有订阅博主的专栏,.

2020-06-15 09:45:03 81242 22

原创 DayDayUp之Job:牛客网—算法工程师—剑指offer之66道在线编程(解决思路及其代码)——1~20

DayDayUp之Job:牛客网—算法工程师—剑指offer之66道在线编程——01~20目录剑指offer——66道在线编程——01~201、二维数组中的查找某个target—二分法查找2、字符串内空格进行替换—列表转为字符串技巧3、链表翻转4、重建二叉树5、用两个栈实现队列6、旋转数组的最小数字7、斐波那契数列8、斐波拉契数序列应用:跳台阶→...

2020-02-29 23:29:20 75757 18

原创 AGI:走向通用人工智能的【生命学&哲学&科学】第二篇——思维、生命科学、客观世界

AGI:走向通用人工智能的【生命学&哲学&科学】——生命、意识、五行、易经、量子之第二篇导读:关于人类思维的五个层次,博主的评价:这五个层次,有两条主线,思维需要扩展且没有尽头,逻辑需要递进且要有闭环。思维扩展潜台词是多听多想,逻辑闭环潜台词是自圆其说。五个层次,比较迎合当下成功学的看法,这个分析,值得加以学习和借鉴。...

2020-02-25 16:41:15 102478 16

原创 High&NewTech:一文了解计算机思维、数学思维的本质区别,以及算法和程序的认知比较

High&NewTech:一文了解计算机思维、数学思维的本质区别,以及算法和程序的认知比较导读 本文章论述均为知识分享和传播,欢迎不同见解者,前来华山论剑、讨论探究,求同存异! 计算思维是一种递归思维,它是利用启发式推理来寻求解答,是按照计算机科学领域所特有的解决方式,对问题进行抽象和界定,通过量化、建模、设计算法和编程等方法,形成计算机可处理的解决方案。而数学思维是人的大脑的思维,解决问题的方式是人脑所擅长的抽象、归纳、类比、推理、演绎和逻辑分析等;计算思维同样是人的大脑的思维

2019-01-21 23:33:33 13307 5

原创 Algorithm:【算法进阶之路】之算法面试刷题集合—十大经典排序算法(​简单插入排序/希尔排序、选择排序/堆排序、冒泡排序/快速排序、归并排序、计数排序/桶排序/基数排序)动态图文讲解及其代码实现

​Algorithm:【算法进阶之路】之算法面试刷题集合—十大经典排序算法(​简单插入排序/希尔排序、选择排序/堆排序、冒泡排序/快速排序、归并排序、计数排序/桶排序/基数排序)动态图文讲解及其代码实现目录相关文章排序算法思维导图十大算法复杂度、稳定性比较十大排序算法相关文章DSt:数据结构的简介、最强学习路线(逻辑结构【数组-链表-栈和队列/树-图-哈希】、物理结构【元素/关系】、数据运算【十大排序/四大查找-图三大搜索-树三大遍历】

2018-05-21 19:28:10 44596 4

原创 NLP之SL:深度学习领域之序列学习的简介(四大场景+四大任务【识别/预测/生成/决策】)、序列监督学习、序列标注任务(两大类算法-基于概率图模型/基于神经网络【Transformer等】)之详细攻略

​NLP之SL:深度学习领域之序列学习的简介(四大场景+四大任务【识别/预测/生成/决策】)、序列监督学习、序列标注任务(两大类算法-基于概率图模型/基于神经网络【Transformer等】)之详细攻略目录序列学习的简介序列标注任务的简介序列学习的简介序列学习的概述(四大场景+四大任务+两大类算法)序列学习序列学习(Sequence Learning, SL)是一种机器学习问题,其中输入和输出都是序列数据。序列学习是指通过对序列数据进行学习,来实现对该序列的分类、回归、生成等

2018-04-18 10:19:49 8943 1

原创 Python编程语言学习高阶:解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比

​Python编程语言学习高阶:解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比目录解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比T1、修改 sys.path:适用于简单的脚本开发和调试,灵活但不适合大规模项目T2、使用相对导入:适用于规范化的包管理和大规模项目,但需要符合包的结构要求解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比解决的是在 Python 项目中跨目录导入模块的问题。

2024-06-15 11:38:38 1343

原创 成功解决\torch\cuda_init_.py“, line 239,AssertionError(“Torch not compiled with CUDA enabled“)

​成功解决\torch\cuda_init_.py", line 239, in _lazy_init raise AssertionError("Torch not compiled with CUDA enabled")目录解决问题解决思路解决方法解决问题\torch\cuda_init_.py", line 239, in _lazy_init raise AssertionError("Torch not compiled with CUDA enable

2024-06-15 11:32:44 1312

原创 LLMs:《A Decoder-Only Foundation Model For Time-Series Forecasting》的翻译与解读

​LLMs:《A Decoder-Only Foundation Model For Time-Series Forecasting》的翻译与解读目录《A Decoder-Only Foundation Model For Time-Series Forecasting》的翻译与解读ABSTRACT1 Introduction引言7 Conclusion结论《A Decoder-Only Foundation Model For Time-S

2024-06-15 00:48:40 749

原创 LLMs之Qwen2:Qwen2的简介、安装和使用方法、案例应用之详细攻略

​LLMs之Qwen2:Qwen2的简介、安装和使用方法、案例应用之详细攻略目录Qwen2的简介Qwen2的安装和使用方法Qwen2的案例应用Qwen2的简介2024年6月6日,发布Qwen2,Qwen2是从Qwen1.5进化而来,提供五种规模的预训练和指令微调模型(0.5B、1.5B、7B、57B-A14B和72B),支持多达27种语言,具有顶尖的基准测试性能,在编码和数学方面显著提升,并扩展了Qwen2-7B-Instruct和Qwen2

2024-06-14 02:36:37 690

原创 LLMs之translation-agent:translation-agent的简介、安装和使用方法、案例应用之详细攻略

​LLMs之translation-agent:translation-agent的简介、安装和使用方法、案例应用之详细攻略目录translation-agent的简介translation-agent的安装和使用方法translation-agent的案例应用translation-agent的简介Translation Agent:使用反射工作流程的代理翻译这是一个展示使用反射工作流程进行机器翻译的Python示例。主要步骤如下:提示大型语言模型(LLM)将文本

2024-06-14 02:21:45 618

原创 LLMs之Bench:LiveBench的简介、安装和使用方法、案例应用之详细攻略

​LLMs之Bench:LiveBench的简介、安装和使用方法、案例应用之详细攻略目录LiveBench的简介LiveBench的安装和使用方法LiveBench的案例应用LiveBench的简介2024年6月12日,LiveBench团队发布LiveBench基准,这是一个为LLMs设计的基准,考虑了测试集污染和客观评估。LiveBench具有以下特点:>> 为了限制潜在的污染,LiveBench每月发布新的问题,并基于最近发布

2024-06-14 02:01:13 693

原创 MLM之GLM-4:GLM-4-9B源码解读(finetune.py)模型微调与评估的完整实现——定义命令行参数→加载微调配置/模型/分词器/数据管理器→定义数据集(训练集/验证集/测试集)→模型训练

​MLM之GLM-4:GLM-4-9B源码解读(finetune.py)模型微调与评估的完整实现——定义命令行参数→加载微调配置/模型/分词器/数据管理器→定义数据集(训练集/验证集/测试集)→模型训练(梯度检查点/支持从检查点恢复训练)→模型评估(存在测试数据集/基于ROUGE和BLEU分数)目录GLM-4-9B源码解读(finetune.py)模型微调与评估的完整实现——定义命令行参数→加载微调配置/模型/分词器/数据管理器→定义数据集(训练集/验证集/测试集)→模型训练(梯度检查点/支持从检

2024-06-12 02:10:43 618

原创 MLM之GLM-4:GLM-4-9B源码解读(inference.py)加载预训练的因果语言模型基于用户提问实现对话生成——定义对话消息模板{system+tools+user}→加载模型和分词器→利

​MLM之GLM-4:GLM-4-9B源码解读(inference.py)加载预训练的因果语言模型基于用户提问实现对话生成——定义对话消息模板{system+tools+user}→加载模型和分词器→利用apply_chat_template函数应用对话模板(将消息转换为模型输入格式)→定义生成参数并生成输出→解码输出并打印响应目录GLM-4-9B源码解读(inference.py)加载预训练的因果语言模型基于用户提问实现对话生成——定义对话消息模板{system+tools+user}→加载模型

2024-06-12 02:10:09 592

原创 LLMs之RAG:提高化RAG性能之优化分块Chuck的策略的常用方法(固定块大小、语义分块【句子分割/NLTK/spaCy/嵌入模型】、递归分块、结构分块【html/markdown/latex】)

LLMs之RAG:提高化RAG性能之优化分块Chuck的策略的常用方法(固定块大小、语义分块【句子分割/NLTK/spaCy/嵌入模型】、递归分块、结构分块【html/markdown/latex】)、代码实现(基于langchain框架)之详细攻略。

2024-06-09 22:20:22 1113 1

原创 MLM之GLM-4-9B:GLM-4-9B的简介、安装和使用方法、案例应用之详细攻略

​MLM之GLM-4-9B:GLM-4-9B的简介、安装和使用方法、案例应用之详细攻略目录GLM-4的简介GLM-4-9B的安装和使用GLM-4-9B的案例应用GLM-4的简介GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B及其人类偏好对齐的版本GLM

2024-06-07 00:15:21 2576

原创 AIGC之MetaHuman:HeyGen(基于AI驱动的视频生成平台+数字人)的简介、安装和使用方法、案例应用之详细攻略

境中采取行动,目的是在这个框架内最大化某种累积奖励。Agent通过采取行动不断地从经验中学习,观察由此产生的环境变化,并根据其行为的结果接受奖励或惩罚。通过迭代这个过程,Agent很容易改进其策略,以做出更好的决定,增加它成功的机会。

2024-06-05 00:41:30 1530

原创 成功解决TypeError: multiple bases have instance lay-out conflict

​成功解决TypeError: multiple bases have instance lay-out conflict目录解决问题解决思路解决方法解决问题TypeError: multiple bases have instance lay-out conflictTraceback (most recent call last):File "E:\File_Python\Python_daydayup\20230927.py", line 11, in

2024-06-05 00:25:43 1055

原创 成功解决AttributeError: module ‘pandas.core.strings‘ has no attribute ‘StringMethods‘

​成功解决AttributeError: module 'pandas.core.strings' has no attribute 'StringMethods'目录解决问题解决方法解决问题AttributeError: module 'pandas.core.strings' has no attribute 'StringMethods'解决方法第一次尝试,猜测pandas和dask不兼容的问题导致!pip uninstall pandaspip uninstall

2024-06-05 00:21:28 659

原创 成功解决FileNotFoundError: [Errno 2] No such file or directory: ‘D:\\ProgramData\\Anaconda3\\Lib\\site-p

​成功解决FileNotFoundError: [Errno 2] No such file or directory: 'D:\\ProgramData\\Anaconda3\\Lib\\site-packages\\win32com\\gen_py\\dicts.dat'目录解决问题解决思路解决方法解决问题Traceback (most recent call last): File "D:\ProgramData\Anaconda3\Lib\site-packages\wi

2024-06-01 00:23:36 843 1

原创 LLMs之ReACT-Agent:ReACT-Agent简介、实现及其使用方法(MReACT/AutoReACT)、案例应用(比如采用ReAct框架让LLM稳定输出JSON格式数据)之详细攻略

Prompt的案例应用(比如采用ReAct框架让LLM稳定输出JSON格式数据)1、

2024-05-29 01:59:28 829

原创 成功解决ValueError: could not convert string to float—深度刨析随森林模型RandomForestClassifier直接处理类别型特征报错原因及其解决方

​成功解决ValueError: could not convert string to float—深度刨析随森林模型RandomForestClassifier直接处理类别型特征报错原因及其解决方案目录解决问题解决思路解决方法解决问题 File "E:\File_Python\Python_Books\Chapter_2\demo00001.py", line 111, in feature_importance_selector clf.fit(df

2024-05-29 01:56:00 803

原创 LLMs之Embedding:FlagEmbedding(一款用于微调/评估文本嵌入模型的工具)的简介、安装和使用方法、案例应用之详细攻略

​LLMs之Embedding:FlagEmbedding(一款用于微调/评估文本嵌入模型的工具)的简介、安装和使用方法、案例应用之详细攻略目录FlagEmbedding的简介FlagEmbedding的安装和使用方法FlagEmbedding的案例应用FlagEmbedding的简介FlagEmbedding是一个用于微调文本嵌入模型的工具,旨在通过利用特定任务的数据,提升预训练的文本嵌入模型在该任务上的性能。在这个示例中,我们展示了如何使用您的数据微

2024-05-29 01:55:16 1726

原创 MLM之CogVLM2:CogVLM2(基于Llama-3-8B-Instruct 模型进行微调)的简介、安装和使用方法、案例应用之详细攻略

​MLM之CogVLM2:CogVLM2的简介、安装和使用方法、案例应用之详细攻略目录CogVLM2的简介CogVLM2的安装和使用方法CogVLM2的案例应用CogVLM2的简介GitHub地址:https://github.com/THUDM/CogVLM21、更新日志News:2024/5/24:我们发布了 Int4 版本模型,仅需要 16GB 显存即可进行推理。欢迎前来体验!News:2024/5/20:我们发布了下一代模型 CogVLM2,它基于 llama3-

2024-05-26 02:21:08 2251 2

原创 LLMs之PEFT之Llama-2:《LoRA Learns Less and Forgets LessLoRA学得更少但遗忘得也更少》翻译与解读

​LLMs之PEFT之Llama-2:《LoRA Learns Less and Forgets Less》翻译与解读目录《LoRA Learns Less and Forgets Less》翻译与解读Abstract摘要1 Introduction引言6 Discussion讨论7 Conclusion结论《LoRA Learns Less and Forgets Less》翻译与解读地址论文地址:https://arxiv.org/abs/2405.0

2024-05-26 01:07:21 1457

word2vec_wiki.model.rar

NLP之word2vec:利用 Wikipedia Text(中文维基百科)语料+Word2vec工具来训练简体中文词向量 word2vec_wiki.model

2019-05-19

CRNN_CTC_OCR models.rar

DL之CNN:基于CRNN_OCR算法(keras,CNN+RNN)利用DIY数据集训练来实现新图片上的不定长度中文文字识别 https://blog.csdn.net/qq_41185868/article/details/90246673

2019-05-17

MNIST(手写数字图片识别+csv文件)数据集

MNIST(手写数字图片识别+csv文件)数据集简介、下载、使用方法之详细攻略

2019-03-12

IMDB影评数据集

IMDB影评数据集,Dataset之IMDB影评数据集:IMDB影评数据集的简介、下载、使用方法之详细攻略

2019-03-11

Rotten Tomatoes影评数据集

Rotten Tomatoes影评数据集

2019-03-11

数据集—基于TF NMT利用带有Attention的 ED模型训练、测试(中英文平行语料库)实现将英文翻译为中文的LSTM翻译(中英文平行语料库)训练数据集

数据集—基于TF NMT利用带有Attention的 ED模型训练、测试(中英文平行语料库)实现将英文翻译为中文的LSTM翻译(中英文平行语料库)训练数据集—train

2019-02-25

数据集——基于TF NMT利用带有Attention的 ED模型训练、测试(中英文平行语料库)实现将英文翻译为中文的LSTM

数据集——基于TF NMT利用带有Attention的 ED模型训练、测试(中英文平行语料库)实现将英文翻译为中文的LSTM

2019-02-24

微软最有价值专家申请表格MVP Application Form

微软最有价值专家申请表格MVP Application Form,

2019-02-19

希拉里邮件数据集HillaryEmails

希拉里邮件数据集HillaryEmails

2019-02-18

《Apache Pass and Coldstream Update Jan 2017》—修订版3.5—20170131

《Apache Pass and Coldstream Update Jan 2017》—修订版3.5—20170131

2019-02-16

精准资助(train和test数据集)

精准资助(train和test数据集),精准资助(train和test数据集)

2019-01-18

2018年全国大学生计算机技能应用大赛《住房月租金预测大数据赛》数据集

2018年全国大学生计算机技能应用大赛《住房月租金预测大数据赛》数据集

2019-01-18

基于加密算法的图像隐术加密软件

基于加密算法的图像隐术加密 基于加密算法的图像隐术加密

2018-08-04

中国主要城市地图坐标

中国主要城市地图坐标 中国主要城市地图坐标 中国主要城市地图坐标

2018-07-20

MySQL Data(世界上78700多个城市地区(ID、地区名字、所属国家、编号、经纬度、所属省份)

MySQL Data(世界上78700多个城市地区(ID、地区名字、所属国家、编号、经纬度、所属省份).rar

2018-07-20

中国31个省级行政区域GDP数据地图热点图(暂时不包括港澳台).rar

中国31个省级行政区域GDP数据地图热点图(暂时不包括港澳台).rar

2018-07-18

2018最新人工智能行业创新企业Top100名单AI地区热点图

2018最新人工智能行业创新企业Top100名单AI地区热点图

2018-07-18

3D(爬取的14年所有的福彩信息).rar

3D(爬取的14年所有的福彩信息).rar 3D(爬取的14年所有的福彩信息).rar

2018-07-14

Python库之scipy-1.0.0-cp36-none-win_amd64.rar

Python库之scipy-1.0.0-cp36-none-win_amd64.rar,Python库之scipy-1.0.0-cp36-none-win_amd64.rar

2018-07-02

Win系统下使用的pymssql+适合python3.6

Win系统下使用的pymssql+适合python3.6,Win系统下使用的pymssql+适合python3.6

2018-06-22

New York City Taxi Fare Prediction数据集

New York City Taxi Fare Prediction,纽约市出租车票价预测,该数据集包括共计8个字段,分别是key ,fare amount ,pickup datetime ,pickup longitude ,pickup latitude ,dropoff longitude ,dropoff latitude ,passenger count,即键,票价金额,接送日期时间,接送经度,接送纬度,下车经度,下车纬度,乘客数量。

2022-07-28

Medical Data and Hospital Readmissions数据集

Medical Data and Hospital Readmissions,医疗数据和医院再入院情况,该数据集包括共计65个字段,分别是住院时间,实验室操作数,操作数,药物操作数,门诊操作数,急诊操作数,住院操作数,诊断操作数,种族白人,种族非洲裔,性别女性,年龄[70-80],年龄[60-70),年龄[50-60),年龄[80-90),年龄[40-50],支付码?,支付码MC,支付码HM,支付码SP,支付码BC,医学专科?,医学专科内科,医学专科急诊/创伤,医学专科家庭/普通科,医学专科心脏病,诊断1 428等等。

2022-07-28

FIFA 2018 Statistics数据集

FIFA 2018 Statistics数据集的简介         FIFA 2018 Statistics数据集是包含2018 男足世界杯(128 场比赛)基本统计信息,此文件包含 FIFA 2018 比赛统计数据。

2022-07-28

DataScience:风控场景之金融评分卡模型构建—将逻辑回归LoR模型结果转为评分卡之详细攻略

DataScience:风控场景之金融评分卡模型构建—将逻辑回归LoR模型结果转为评分卡之详细攻略 金融评分卡模型构建—将逻辑回归LoR模型结果转为评分卡 1、模型结果转换为标准评分卡步骤 2、实际案例应用 金融评分卡模型构建—将逻辑回归LoR模型结果转为评分卡 1、模型结果转换为标准评分卡步骤 借助逻辑回归模型,评分卡所设定的分值刻度,可通过将分值表示为比率对数的线性表达式来定义。 在建立评分卡模型时,我们经常会使用逻辑回归来对数据进行建模。但在用逻辑回归进行预测时,逻辑回归返回的是一个概率值,并不是评分卡分数。下面为大家介绍如何将模型结果转换为标准评分卡。

2022-06-19

ML之FE:IV信息量(Information Value)指标(衡量变量的预测能力)的简介、计算逻辑、使用方法之详细攻略.do

IV,Information Value,信息价值,信息量,用来表示变量对目标预测的贡献程度,也就是预测能力。该指标经常被用在评分卡模型中进行筛选变量。变量的IV值越大,表示自该变量的预测能力越强。但是求IV值,需要先求WOE值,从计算WOE可知,该指标是用在有监督学习,且目标变量为二分类的任务中。

2022-06-17

DataScience:机器学习中特征工程之WOE编码(离散变量编码/有监督)的简介、计算过程、案例应用之详细攻略

DataScience:机器学习中特征工程之WOE编码(离散变量编码/有监督)的简介、计算过程、案例应用之详细攻略 (1)、什么是WOE编码 (2)、案例理解WOE编码 (3)、WOE编码技术的深度思考 (4)、为什么选择采用WOE编码? (5)、WOE编码的优势 WOE编码—离散变量编码(有监督性的编码) 在建模前,我们需要把原始的值转化成WOE值才能使得模型效果好。 提出问题 怎样对字段的每个分段进行评分呢?这个评分是怎么来的? 解决方案 WOE编码, 将预测概率值转化为评分, 利用变量相关性分析和变量的系数符号保证每个分箱评分的合理性。 分箱之后我们便得到了一系列的离散变量,下面需要对变量进行编码,将离散变量转化为连续变量。WOE编码是评分卡模型常用的编码方式。

2022-06-16

nvidia-smi的简介、安装使用的安装包

nvidia-smi的简介、安装使用的安装包

2021-11-14

可视化工具Graphviz

可视化工具Graphviz 2.38

2021-09-19

2021年互联网求职面试—职位(初级中级高级管理)公司面试评价表—非常详细.doc

2021年互联网求职面试—职位(初级中级高级管理)公司面试评价表—非常详细

2021-09-04

《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》

人工智能领域—计算机视觉最新文章观察,2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》67页pdf原文

2021-03-03

babyboom.dat.rar

1997年12月18日,在澳大利亚昆士兰州布里斯班的圣母医院,24小时内诞生了44个婴儿,这是一项新的记录。对于这44个婴儿,《星期日邮报》记录了他们的出生时间、性别和出生时的体重(以克为单位)。此外,还包括了每名婴儿从午夜到出生的时间。

2021-02-24

机器学习算法中自然语言处理常用数据集(新闻数据集news.csv)及jieba_dict字典、停用词等相关文件

机器学习算法中自然语言处理常用数据集(新闻数据集news.csv)及jieba_dict字典、停用词等相关文件,包括以下文件 data/news.csv jieba_dict/dict.txt.big jieba_dict/stopwords.txt jieba_dict/stopwords_s.txt

2020-12-22

Big Mart Sales数据集

Big_Mart_Sales数据集包括Test_u94Q5KV.csv和Train_UWu5bXk.csv

2020-12-17

stock_dataset(1990~2015股票最高单变量数据集).rar

本文档为数据集,1990~2015股票最高单变量数据集。stock_dataset(1990~2015股票最高单变量数据集).rar

2019-12-27

graph_opt—CV之DNN:基于OpenPose的OpenCV利用DNN算法实现对单人体姿态(美女跳舞)实时估计检测.rar

graph_opt—CV之DNN:基于OpenPose的OpenCV利用DNN算法实现对单人体姿态(美女跳舞)实时估计检测.rar

2019-12-17

dlib.shape_predictor(shape_predictor_68_face_landmarks_dat).rar

dlib.shape_predictor(shape_predictor_68_face_landmarks_dat).rar

2019-12-16

mnist数据集下载的完整代码——mnist_download_main.rar

基于python语言,mnist数据集下载的完整代码,mnist_download_main.rar

2019-07-29

201905—机器学习之特征工程—六天课程知识总结的思维导图.pdf

201905—机器学习之特征工程—六天课程知识总结的思维导图.pdf

2019-06-25

Html网页(js+css)实现情人节表白神器三套.rar

Html网页(js+css)实现情人节表白神器三套 Love:程序猿的方式~【情人节&520;—我爱你】~动画加音效 → 那些年最浪漫的表白(帮你得到你的她) https://yunyaniu.blog.csdn.net/article/details/79430987

2019-05-20

AutoKeras测试代码使用数据集(Dataset:(公交车、恐龙、大象、花朵、骏马)六类图片数据集

AutoKeras测试代码使用数据集(Dataset:(公交车、恐龙、大象、花朵、骏马)六类图片数据集(AutoKeras测试)的简介、下载、使用方法之详细攻略).rar

2019-05-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除