一个处女座的程序猿
码龄5年
  • 29,455,492
    被访问
  • 2,428
    原创
  • 2
    排名
  • 741,509
    粉丝
关注
提问 私信

个人简介:人工智能硕博生,拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。

  • 加入CSDN时间: 2017-11-26
博客简介:

一个处女座的程序猿

博客描述:
低调,谦虚,自律,反思,成长……本博客主要分享人工智能、区块链等最新前沿技术,包括计算机视觉、自然语言处理、数据科学,分布式存储、智能合约等。紧跟前沿FaceBook、Google、Microsoft……
查看详细资料
  • 9
    领奖
    总分 29,198 当月 1,204
个人成就
  • 人工智能领域优质创作者
  • 博客专家认证
  • 获得23,960次点赞
  • 内容获得8,964次评论
  • 获得40,315次收藏
创作历程
  • 81篇
    2022年
  • 262篇
    2021年
  • 574篇
    2020年
  • 738篇
    2019年
  • 781篇
    2018年
  • 4篇
    2017年
成就勋章
TA的专栏
  • 精选(人工智能+区块链)
    付费
    235篇
  • 成长书屋
    付费
    24篇
  • 安装教程以及Bug解决
    付费
    292篇
  • SLAM
    3篇
  • AI
    136篇
  • BlockChain
    46篇
  • CV
    159篇
  • DataScience
    191篇
  • NLP
    64篇
  • DayDayUp
    87篇
  • Algorithm/Interview
    102篇
  • High&NewTech
    82篇
  • ML
    327篇
  • DL
    297篇
  • RL
    7篇
  • Paper
    51篇
  • BigData/Cloud Computing
    41篇
  • Python编程(初级+进阶)
    185篇
  • Python_Libraries
    160篇
  • Matlab/C++/SQLserver
    91篇
  • Java/Html/JS/VB/Go etc
    12篇
  • Computer knowledge
    637篇
  • TF/PyTorch
    85篇
  • Keras/Caffe
    29篇
  • Dataset
    50篇
  • Crawler
    22篇
  • VM(Linux/Ubuntu)
    29篇
  • Tool/IDE etc
    69篇
  • 2D(Autolisp)/3D
    12篇
  • Computer(Win)
    33篇
兴趣领域 设置
  • 数据结构与算法
    算法数据结构
  • 人工智能
    计算机视觉机器学习自然语言处理
  • 区块链
    智能合约
TA的社区
  • 一个处女座的程序猿【问答社区】
    640286 成员 562 内容
人工智能、区块链技术行业研究学者
☆☆云崖牛工作室官网平台☆☆
因博主朋友圈一半以上是研究生(及以上学历),为了高质量+高效率解决招聘信息资源不对称问题,国内外需要招聘高学历人才(研究生及以上学历)的世界500强公司的HR,可直接私聊,我会引荐。
点击加入【程序猿问答社区】
人工智能硕博生,目前任职于世界200强公司(核心技术专家),受邀国内采访和评审十多次。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智能算法最新实战》一书,目前已37万字。
90后(创业/情怀/信仰/奋斗/成长)
博主粉丝福利(云服务器、网站、小程序等)
☆☆☆☆☆☆☆博主助理微信号☆☆☆☆☆☆☆ watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQxMTg1ODY4,size_16,color_FFFFFF,t_70 ☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 助人为乐,手留余香。请先“关注博主的【博客】”或“订阅博主的【精选专栏】”后,再留言索取资料哈!
博主的微信公众号正在更新迁移,暂时关闭,敬请期待!如需资料(白天没时间,等粉丝关注博主后,资料一律晚上发送),在对应博客文章下留言索取;等公众号恢复,可去公众号下索取。
如果已经订阅博主的专栏,当对专栏内的文章有疑难困惑,可留言,博主会及时解答! 1412593522-4.gif
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

DataScience&ML:金融科技领域之迁徙率(Flow Rate)表的简介、案例应用之详细攻略

DataScience&ML:金融科技领域之迁徙率的简介、案例应用之详细攻略金融科技领域之迁徙率的简介、案例应用 贷款迁徙率,经济学领域术语,计算方法为期初正常类贷款向下迁徙金额/(期初正常类贷款余额-期初正常类贷款期间减少金额)×100%。(1)、概念定义T1、先设置观察期,再看表现推荐文章:https://zhuanlan.zhihu.com/p/81027037T2、只看每个月的的账户在下个月的表现 概念定义 ...
原创
发布博客 2022.05.15 ·
815 阅读 ·
3 点赞 ·
0 评论

Computer:Todesk(远程控制软件)的简介、安装、使用方法之详细攻略

Computer:Todesk(远程控制软件)的简介、安装、使用方法之详细攻略导读:近些年,ToDesk在远程控制软件领域异军突起,作为国产软件,发展迅猛,的确有“两把刷子”。博主近一段时间,通过下载安装,测试了文件传输、远程打印、远程开机,尤其是远程控制帮助博主自己的粉丝解决了很多编程上的bug,用起来还算比较得心应手,基本无延迟,而且不卡顿,要的就是口碑。其实,国外外市场上远程控制软件也不少,有的想要免费,有的是想要速度快,有的主要考虑安全,小孩子才做选择,而我们全要,免费且不限速的,恐怕只有
原创
发布博客 2022.05.11 ·
9026 阅读 ·
35 点赞 ·
4 评论

BigData:数据中台相关术语概念简介—数据域/业务过程/业务域/指标字典/指标类型/原子指标/派生指标/度量/维度/维度属性/时间周期/修饰词/修饰类型等之详细攻略

BigData:数据中台相关术语概念简介—数据域/业务过程/业务域/指标字典/指标类型/原子指标/派生指标/度量/维度/维度属性/时间周期/修饰词/修饰类型等之详细攻略目录数据域/业务过程/业务域/指标字典/指标类型/原子指标/派生指标/度量/维度/维度属性/时间周期/修饰词/修饰类型等数据域/业务过程/业务域/指标字典/指标类型/原子指标/派生指标/度量/维度/维度属性/时间周期/修饰词/修饰类型等 名词 解释 数据域
原创
发布博客 2022.05.08 ·
1343 阅读 ·
3 点赞 ·
0 评论

BigData:数仓/数据仓库的定义、特点、意义之详细攻略

BigData:数仓/数据仓库的定义、特点、意义之详细攻略目录数仓/数据仓库的定义、特点、意义数仓/数据仓库的定义、特点、意义 定义 数据仓库始于20世纪80年代中期。由数据仓库之父 W.H Inmon在1991年出版的“Building the Data Warehouse”(《数据仓库》)一书中提出了准确而又广泛被大家接受的定义。数仓是面向主题的、集成的、相对稳定的、随时间变化的用于支持管理决策的数据集合。 其实本质上,数仓还是
原创
发布博客 2022.05.08 ·
1689 阅读 ·
2 点赞 ·
0 评论

BigData:数据中台的简介、架构、演进史、意义、案例之详细攻略

BigData:数据中台的简介、架构、演进史、意义、案例之详细攻略目录BigData:数据中台的简介、架构、演进史、意义、案例之详细攻略数据中台架构数据中台的演进史中台的意义(举例解释)中台建设的本质理解中台(举例解释)架构层面理解中台中台解决方案的组成 = 能力输出+标准化中间件BigData:数据中台的简介、架构、演进史、意义、案例之详细攻略数据中台是技术的概念,更是企业管理的概念,居于前台和后台之间,是企业级的数据共享、能力复用平台。数据中台通过
原创
发布博客 2022.05.08 ·
1789 阅读 ·
2 点赞 ·
0 评论

DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)

DL之DNN:基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)目录基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度下降算法进行回归预测(数据较多时采用mini-batch方式训练会更快)输出结果实现代码基于sklearn自带california_housing加利福尼亚房价数据集利用GD神经网络梯度
原创
发布博客 2022.05.05 ·
979 阅读 ·
3 点赞 ·
1 评论

BigData之Spark:Spark计算引擎的简介、下载、经典案例之详细攻略续篇

BigData之Spark:Spark计算引擎的简介、下载、经典案例之详细攻略目录Spark的简介1、Spark三大特点Spark的下载Spark的经典案例1、Word Count2、Pi Estimation3、Text Search4、Prediction with Logistic RegressionSpark的简介 Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Be...
原创
发布博客 2022.04.25 ·
756 阅读 ·
7 点赞 ·
1 评论

Py之albumentations:albumentations库函数的简介、安装、使用方法之详细攻略续篇

Py之albumentations:albumentations库函数的简介、安装、使用方法之详细攻略目录albumentations库函数的简介1、albumentations库特点albumentations库函数的安装albumentations库函数的使用方法1、经典案例albumentations库函数的简介 albumentations是图像数据增强库。基于高度优化的 OpenCV 库实现图像快速数据增强。针对不同图像任务,如分割...
原创
发布博客 2022.04.24 ·
856 阅读 ·
7 点赞 ·
2 评论

Py之pycocotools:pycocotools库的简介、安装、使用方法之详细攻略续篇

Py之pycocotools:pycocotools库的简介、安装、使用方法之详细攻略目录pycocotools库的简介pycocotools库的安装pycocotools库的使用方法1、from pycocotools.coco import COCO2、输出COCO数据集信息并进行图片可视化pycocotools库的简介 pycocotools是什么?即python api tools of COCO。COCO是一个大型的图像数据集,用于...
原创
发布博客 2022.04.24 ·
870 阅读 ·
6 点赞 ·
0 评论

Paper之EfficientDet: 《Scalable and Efficient Object Detection—可扩展和高效的目标检测》的翻译及其解读—续篇

Paper之EfficientDet: 《Scalable and Efficient Object Detection—可扩展和高效的目标检测》的翻译及其解读导读:2019年11月21日,谷歌大脑团队发布了论文 EfficientDet: Scalable and Efficient Object Detection。Google Brain 团队的三位 Auto ML 大佬 Mingxing Tan Ruoming Pang Quoc V. Le 最近在 Arxiv 上发表了该文章,有网友猜..
原创
发布博客 2022.04.24 ·
680 阅读 ·
5 点赞 ·
0 评论

成功解决ret = ret / rcountTypeError: unsupported operand type(s) for /: ‘str‘ and ‘int‘

成功解决ret = ret / rcountTypeError: unsupported operand type(s) for /: 'str' and 'int'目录解决问题解决思路解决方法解决问题 boxplot(array) File "E:\Program Files\Python\Python36\lib\site-packages\matplotlib\pyplot.py", line 2848, in boxplot zor...
原创
发布博客 2022.04.20 ·
1090 阅读 ·
9 点赞 ·
1 评论

Tool之synergyc:synergyc的简介、安装、使用方法(鼠标键盘控制两台或多台电脑)之详细攻略

Tool之synergyc:synergyc的简介、安装、使用方法(鼠标键盘控制两台或多台电脑)之详细攻略目录synergyc的简介synergyc的安装synergyc的使用方法synergyc的简介 synergyc是用一套鼠标键盘控制两台或多台电脑,但是只适合win7及以下的,win10有时候不适用;无需外部硬件设备,用软件的方法实现一套鼠标键盘控制两台或多台电脑。(1)、Synergy软件特点1、synergy中文版使...
原创
发布博客 2022.04.18 ·
1047 阅读 ·
8 点赞 ·
1 评论

DataScience:机器学习中特征工程之WOE编码—离散变量编码(有监督)

DataScience:机器学习中特征工程之WOE编码—离散变量编码(有监督)目录特征工程之WOE编码—离散变量编码(有监督)(1)、什么是WOE编码(2)、案例理解WOE编码结论与总结(3)、WOE编码技术的深度思考(4)、为什么选择采用WOE编码?(5)、WOE编码的优势特征工程之WOE编码—离散变量编码(有监督)在建模前,我们需要把原始的值转化成WOE值才能使得模型效果好。 提出问题 怎样对字段的每个分
原创
发布博客 2022.04.17 ·
1420 阅读 ·
5 点赞 ·
0 评论

DataScience&ML:金融科技领域之风控的简介、类别、案例应用之详细攻略

DataScience&ML:金融科技领域之风控的简介、类别、案例应用之详细攻略目录金融科技领域之风控的简介金融科技领域之风控的类别1、信贷风控1.1、贷款1.2、信用卡金融科技领域之风控的案例应用1、定义目标变量(good/bad)2、特征构建思路金融科技领域之风控的简介 风控,顾名思义,风险控制。风控包含了风险管理和内部控制,但在不同类型的企业中,风控的管理及控制的领域方向也会有所不同。风险可以分为信用风险、市场...
原创
发布博客 2022.04.17 ·
1022 阅读 ·
5 点赞 ·
0 评论

Python绘图之matplotlib基础教程:利用matplotlib绘制热图并对横坐标重新设置,并按照指定显示的字符串可视化(比如将012改为ABC)

Python绘图基础教程:利用matplotlib绘制热图并对横坐标重新设置,并按照指定显示的字符串可视化(比如将012改为ABC)目录利用matplotlib绘制热图并对横坐标重新设置,并按照指定显示的字符串可视化(比如将012改为ABC)存在问题添加核心代码实现结果显示利用matplotlib绘制热图并对横坐标重新设置,并按照指定显示的字符串可视化(比如将012改为ABC)存在问题横坐标、纵坐标数据默认均是从0开始,想要改为自定义的字符显示
原创
发布博客 2022.04.11 ·
988 阅读 ·
5 点赞 ·
0 评论

Python绘图之matplotlib基础教程:matplotlib库图表绘制中常规设置大全(交互模式、清除原有图像、设置横坐标显示文字/旋转角度、添加图例、绘图布局自动调整、图像显示、图像暂停)

​Python绘图基础教程之matplotlib:matplotlib库图表绘制中常规设置大全(交互模式、清除原有图像、设置横坐标显示文字/旋转角度、添加图例、绘图布局自动调整、图像显示、图像暂停)目录matplotlib库图表绘制中常规设置大全(交互模式、清除原有图像、设置横坐标显示文字/旋转角度、添加图例、绘图布局自动调整、图像显示、图像暂停)matplotlib库图表绘制中常规设置大全(交互模式、清除原有图像、设置横坐标显示文字/旋转角度、添加图例、绘图布局自动调整、图像显示、图像暂停)
原创
发布博客 2022.04.03 ·
4666 阅读 ·
8 点赞 ·
0 评论

ML:文本、图像等数值化数据相似度计算之余弦相似度计算三种python代码实现

ML:文本、图像等数值化数据相似度计算之余弦相似度计算三种python代码实现目录相似度计算之余弦相似度计算输出结果三种python代码实现相似度计算之余弦相似度计算输出结果Cosine_SimilarityDIY,计算余弦相似度:0.8660254037844387Cosine_SimilarityBydot,计算余弦相似度:0.8660254037844387Cosine_SimilarityBydot,计算余弦相似度:0.866025403
原创
发布博客 2022.04.03 ·
2026 阅读 ·
7 点赞 ·
0 评论

成功解决AttributeError: predict_proba is not available when probability=False

成功解决AttributeError: predict_proba is not available when probability=False目录解决问题解决思路解决方法解决问题raise AttributeError("predict_proba is not available when "AttributeError: predict_proba is not available when probability=False解..
原创
发布博客 2022.03.19 ·
1446 阅读 ·
11 点赞 ·
0 评论

成功解决ValueError: feature_names mismatch: [‘f0‘, ‘f1‘, ‘f2‘, ‘f3‘, ‘f4‘] expected f3, f1, f2, f0, f4

成功解决ValueError: feature_names mismatch: ['f0', 'f1', 'f2', 'f3', 'f4'] expected f3, f1, f2, f0, f4目录解决问题解决思路解决方法T1、修改函数T2、升级版本解决问题ValueError: feature_names mismatch: ['f0', 'f1', 'f2', 'f3', 'f4']expected f3, f1, f2, f0, f.
原创
发布博客 2022.03.19 ·
3278 阅读 ·
9 点赞 ·
0 评论

ML之分类预测:分类预测评估指标之AUC计算的的两种函数具体代码案例实现

ML之分类预测:分类预测评估指标之AUC计算的的两种函数具体代码案例实现目录分类预测评估指标之AUC计算的的两种函数代码案例实现输出结果实现代码分类预测评估指标之AUC计算的的两种函数代码案例实现输出结果0.843750.84375实现代码# ML之分类预测:分类预测评估指标之AUC计算的的两种函数代码案例实现y_true = [1, 0, 1, 0, 0, 1, 0, 1]y_p
原创
发布博客 2022.03.19 ·
1360 阅读 ·
9 点赞 ·
0 评论
加载更多