Java中PriorityQueue相关

优先队列:依靠堆数据结构来实现,因为堆又是完全二叉树,采用数组来存储,父子关系依靠下标来维系。

Java中,如果调用无参构造函数,默认生成一个能够容纳11个元素的数组,如果不指定比较器,按照小根堆来排列。

扩容操作:PriorityQueue的扩容选择和ArrayList(扩大到原来容量的1.5倍),Vector(默认扩容到原容量的2倍,如果指定了扩容大小,就扩容指定大小)的策略都不同,PriorityQueue的扩容策略:如果当前数组容量小于64,就扩容到原来容量的2倍+2, 如果数组容量大于64, 就扩容到原来的1.5倍。

因为涉及到比较操作,所以在构造的时候允许传入一个比较器,如果传入比较器,就用传入的比较器来比较两个元素的大小,如果没有传入比较器,就用数组元素自己的比较器来比较。

堆的基本调整操作:siftUp(int k, E x), siftDown(int k, E x)

向上调整函数siftUp(int k, E x): 从当前位置开始,一直和父节点比较,如果小于父节点,就将父节点移到当前位置,然后将当前位置上移到父节点位置,接着和父节点进行比较,直到大于父节点或者当前位置移动到根节点,结束。

向下调整函数siftDown(int k, E x):只有待调整节点不是叶子节点的时候,才有调整的必要,如果是叶子节点,不需要调整。

类似于向上调整,向下调整的过程中,当前位置和孩子节点中小的一个进行比较,如果孩子节点更小,则将孩子节点上提作为父节点,当前位置下移到孩子节点的位置,接着和孩子节点中小的一个进行比较,直到当前节点小于两个孩子节点或者已经到达了叶子节点,结束。

调整过程中, half = size >>>1; (逻辑右移操作符:高位补0),因为数组下标是从0开始的,half代表的就是第一个叶子节点的下标,调整过程都是在非叶子节点上进行的,所以结束条件就是while(k < half)。

调整操作heapify():数组中元素初始状态可能并不满足堆的要求,就需要进行调整,调整的策略非常简单,从最后一个非叶子节点开始调用siftDown,一直到根节点,调整操作完成。所以说调整操作还是在siftDown()基础上。源码:

一个需要特别注意的地方:删除特定对象的remove()函数,因为要维持堆的特性,在删除元素以后,将数组的最后一个元素放到删除位置,然后进行调整。在调整过程中就有两种情况:1.删除位置和最后一个元素都在根节点的同一棵子树上,则进行向下调整即可(siftDown); 2.如果不在根节点的同一棵子树上,则大小关系不确定,不一定是向上调整(siftUp)还是向下调整(siftDown), 先向下调整,调整完成以后如果还是原地,尝试进行向上调整,如果需要向上调整,就会出现最后一个元素被调整到删除位置的前面。为了区分这两种情况,remove()采取的策略是根据返回值来判断,如果返回null,则说明最后一个元素经过调整以后位于删除位置的后面,如果返回的是一个元素值,则说明最后一个元素被调整到了删除位置的前面。

经过上面的描述,就会发现一个问题,如果执行删除操作以后,最后一个元素被调整到了删除位置前面,那么迭代器的遍历操作就有可能漏掉这个元素,Java中解决的办法就是提供了一个额外的数据结构:双端队列forgetMeNot,将所有这种情况的元素都放入到forgetMeNot中,遍历过程中,遍历到数组末尾,还需要检查forgetMeNot是否为空,不为空的话还需要对forgetMeNot进行遍历。

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值