机器学习-基本术语

示例或样本:每条记录都是关于一个事件或对象的描述,反映事件或对象在某方面的表现或性质的事项。

泛化:学得模型适用于新样本的能力。

通过样本以及样本的“结果”信息建立预测,如一个西瓜((色泽=青绿;根蒂=蜷缩;敲声=浊响),好瓜),其中好瓜就是样本的“结果”,称为标记。

 

分类:预测的是离散值。

回归:预测的是连续值。

聚类:在学习过程中使用的训练样本通常不拥有标记信息。将训练集的示例分为若干组,每组称为簇,这些自动形成的簇对应一些潜在的概念划分。

监督学习:训练数据拥有标记信息。

无监督学习:训练数据不拥有标记信息。

归纳:从具体的事实归结出一般性规律

演绎:从基础原理推演出具体状况

版本空间或假设集合:现实问题中我们常面临很大的假设空间,但学习过程是基于有限样本训练集进行的,因此,可能有多个假设与训练集一致,即存在着一个与训练集一致的“假设集合”,即版本空间。

归纳偏好:在学习过程中对某种类型假设的偏好。

奥卡姆剃刀:若有多个假设与观察一致,则选最简单的那个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值