题目描述
给你一个整数 x
,如果 x
是一个回文整数,返回 true
;否则,返回 false
。
回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
- 例如,
121
是回文,而123
不是。
解法一(反转一半数字)
思路
映入脑海的第一个想法是将数字转换为字符串,并检查字符串是否为回文。但是,这需要额外的非常量空间来创建问题描述中所不允许的字符串。
第二个想法是将数字本身反转,然后将反转后的数字与原始数字进行比较,如果它们是相同的,那么这个数字就是回文。
但是,如果反转后的数字大于 int.MAX\text{int.MAX}int.MAX,我们将遇到整数溢出问题。按照第二个想法,为了避免数字反转可能导致的溢出问题,为什么不考虑只反转 int\text{int}int 数字的一半?毕竟,如果该数字是回文,其后半部分反转后应该与原始数字的前半部分相同。
例如,输入 1221,我们可以将数字 “1221” 的后半部分从 “21” 反转为 “12”,并将其与前半部分 “12” 进行比较,因为二者相同,我们得知数字 1221 是回文。
算法
首先,我们应该处理一些临界情况。所有负数都不可能是回文,例如:-123 不是回文,因为 - 不等于 3。所以我们可以对所有负数返回 false。除了 0 以外,所有个位是 0 的数字不可能是回文,因为最高位不等于 0。所以我们可以对所有大于 0 且个位是 0 的数字返回 false。
现在,让我们来考虑如何反转后半部分的数字。
对于数字 1221,如果执行 1221 % 10,我们将得到最后一位数字 1,要得到倒数第二位数字,我们可以先通过除以 10 把最后一位数字从 1221 中移除,1221 / 10 = 122,再求出上一步结果除以 10 的余数,122 % 10 = 2,就可以得到倒数第二位数字。如果我们把最后一位数字乘以 10,再加上倒数第二位数字,1 * 10 + 2 = 12,就得到了我们想要的反转后的数字。如果继续这个过程,我们将得到更多位数的反转数字。
现在的问题是,我们如何知道反转数字的位数已经达到原始数字位数的一半?
由于整个过程我们不断将原始数字除以 10,然后给反转后的数字乘上 10,所以,当原始数字小于或等于反转后的数字时,就意味着我们已经处理了一半位数的数字了。
作者:力扣官方题解
链接:https://leetcode.cn/problems/palindrome-number/solutions/281686/hui-wen-shu-by-leetcode-solution/
class Solution(object):
def isPalindrome(self, x):
if x<0 or (x%10==0 and x!=0):
return False
ans = 0
while x>ans:
ans = ans*10 + x%10
x //= 10
return x==ans or x==(ans//10)
-
时间复杂度
O ( l o g 2 ( n ) ) O(log_2(n)) O(log2(n))
-
空间复杂度
O ( 1 ) O(1) O(1)
解法二(转化为字符串)
class Solution(object):
def isPalindrome(self, x):
"""
:type x: int
:rtype: bool
"""
# 将x变量转化为字符串
x = str(x)
# 使用切片取反并赋值给y
y = x[len(x)::-1]
print(y, type(y))
# 判断y是否与x相等返回对应结果
if x == y:
return True
else:
return False
-
时间复杂度(n为字符串的长度)
O ( n ) O(n) O(n)
-
空间复杂度(n为字符串的长度)
O ( 1 ) O(1) O(1)