Java 线程池讲解——针对 IO 密集型任务

针对 IO 密集型的任务,我们可以针对原本的线程池做一些改造,从而可以提高任务的处理效率。

基本

阿里巴巴泰山版java开发手册中有这么一条:

线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,
这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。

那么如果要使用 ThreadPoolExecutor ,那就先来看看构造方法中的所有入参:

corePoolSize : 核心线程数,当线程池中的线程数量为 corePoolSize 时,即使这些线程处于空闲状态,也不会销毁(除非设置 allowCoreThreadTimeOut)。
maximumPoolSize : 最大线程数,线程池中允许的线程数量的最大值。
keepAliveTime : 线程空闲时间,当线程池中的线程数大于 corePoolSize 时,多余的空闲线程将在销毁之前等待新任务的最长时间。
workQueue : 任务队列
unit :线程空闲时间的单位。
threadFactory :线程工厂,线程池创建线程时使用的工厂。
handler : 拒绝策略,因达到线程边界和任务队列满时,针对新任务的处理方法。

这么说可能有些难以理解,你可以结合下图进行参考:d9368b11c913208f4878ba0b8f44e068.jpeg

那么由此我们可以知道,当大量任务被放入线程池之后,先是被核心线程执行,多余的会被放进队列里,当队列满了之后才会创建额外的线程进行处理,再多就会采取拒绝策略。

但这样真的能满足我们的所有需求吗?

任务的分类

正常来说,我们可以把需要处理的任务按照消耗资源的不同,分为两种:CPU 密集型IO 密集型

CPU 密集型

既然名字里带有CPU了,说明其消耗的主要资源就是 CPU 了。

具体是指那种包含大量运算、在持有的 CPU 分配的时间片上一直在执行任务、几乎不需要依赖或等待其他任何东西。

这样的任务,在我的理解中,处理起来其实没有多少优化空间,因为处理时几乎没有等待时间,所以一直占有 CPU 进行执行,才是最好的方式。

唯一能想到优化的地方,就是当单个线程累计较多任务时,其他线程能进行分担,类似fork/join框架的概念。

设置线程数时,针对单台机器,最好就是有几个 CPU ,就创建几个线程,然后每个线程都在执行这种任务,永不停歇。

IO 密集型

和上面一样,既然名字里带有IO了,说明其消耗的主要资源就是 IO 了。

我们所接触到的 IO ,大致可以分成两种:磁盘 IO网络 IO

磁盘 IO ,大多都是一些针对磁盘的读写操作,最常见的就是文件的读写,假如你的数据库、 Redis 也是在本地的话,那么这个也属于磁盘 IO。

网络 IO ,这个应该是大家更加熟悉的,我们会遇到各种网络请求,比如 http 请求、远程数据库读写、远程 Redis 读写等等。

IO 操作的特点就是需要等待,我们请求一些数据,由对方将数据写入缓冲区,在这段时间中,需要读取数据的线程根本无事可做,因此可以把 CPU 时间片让出去,直到缓冲区写满。

既然这样,IO 密集型任务其实就有很大的优化空间了(毕竟存在等待),那现有的线程池可以很好的满足我们的需求吗?

线程池的优化

还记得上面说的, ThreadPoolExecutor 针对多余任务的处理,是先放到等待队列中,当队列塞满后,再创建额外的线程进行处理。

假设我们的任务基本都是 IO 密集型,我们希望程序可以有更高的吞吐量,可以在更短的时间内处理更多的任务,那么上面的 ThreadPoolExecutor 明显是不满足我们的需求,那该如何解决呢?

也许再来看看 ThreadPoolExecutor 的 execute 方法,会让我们有一些思路:

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        // 如果当前活跃线程数,小于核心线程数
        if (workerCountOf(c) < corePoolSize) {
            // 则优先创建线程
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        // 如果任务可以成功放入队列中
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        // 如果不可以成功放入队列,则创建线程
        else if (!addWorker(command, false))
            // 如果无法继续创建线程,则拒绝任务
            reject(command);
    }

针对放入队列的操作,如果队列放入失败,线程池就会选择去创建线程了。因此,我们或许可以尝试自定义线程池,针对 offer 操作,做一些自定义处理。

也就是将任务放入队列时,先检查线程池的线程数是否小于最大线程数,如果是,则拒绝放入队列,否则,再尝试放入队列中。

如果你有看过 dubbo 或者 tomcat 的线程池,你会发现他们就有这样的实现方法。

比如 dubbo 中的 TaskQueue,我们来看看它的 offer 方法:

@Override
    public boolean offer(Runnable runnable) {
        if (executor == null) {
            throw new RejectedExecutionException("The task queue does not have executor!");
        }

        int currentPoolThreadSize = executor.getPoolSize();
        // 如果有空闲等待的线程,则将任务放入队列中,让线程去处理任务
        if (executor.getSubmittedTaskCount() < currentPoolThreadSize) {
            return super.offer(runnable);
        }

        // 如果当前线程数小于最大线程数,则返回 false ,让线程池去创建新的线程
        if (currentPoolThreadSize < executor.getMaximumPoolSize()) {
            return false;
        }

        // 否则,就将任务放入队列中
        return super.offer(runnable);
    }

这样就可以让线程池优先新建线程了。需要注意的是,此时的队列因为需要根据线程池中的线程数决定是否放入任务成功,所以需要持有executor对象,这点不要忘记奥。

总结

通过本篇文章,主要是让大家重新了解了一下 ThreadPoolExecutor ,并针对高吞吐场景下如何进行局部优化。

有兴趣的话可以访问我的博客或者关注我的公众号,说不定会有意外的惊喜。

https://death00.github.io/

公众号:健程之道

134c65657acaa3b08e1b2c79637d9ede.jpeg

点击此处留言

线程池是一种多线程处理形式,它能够在多核处理器上运行多个线程,提高资源利用率。合理的线程池配置可以有效提高应用程序处理任务的效率,对于CPU密集型任务IO密集型任务,通常有不同的配置策略。 CPU密集型任务通常涉及到计算量大、计算密集的操作,例如图形处理、数值计算等。这类任务主要消耗CPU资源,对CPU的利用率接近100%。对于CPU密集型任务线程池的配置应当尽量减少上下文切换的开销,并且充分发挥CPU的处理能力。通常,CPU密集型任务线程池大小可以配置为CPU核心数加一,这样可以利用多核优势,又不至于因为过多的线程导致频繁的上下文切换。 IO密集型任务则通常涉及到大量等待IO操作完成的情况,例如网络请求、文件读写等。这类任务的特点是CPU使用率并不高,但有大量的等待时间。为了提高效率,线程池的大小应该配置得更大,以便在等待IO操作时,CPU可以处理其他任务IO密集型任务线程池大小可以是CPU核心数的两倍左右,这样可以保持较高的CPU利用率,同时减少因等待IO操作而导致的线程空闲时间。 具体到线程池参数的配置,可以采用以下方法: 对于CPU密集型任务,可以配置一个固定大小的线程池,大小为`CPU核心数 + 1`: ```java int corePoolSize = Runtime.getRuntime().availableProcessors() + 1; ThreadPoolExecutor executor = new ThreadPoolExecutor(corePoolSize, corePoolSize, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>()); ``` 对于IO密集型任务,可以配置一个更大的固定大小或可变大小的线程池,大小可以设置为`CPU核心数 * 2`: ```java int corePoolSize = Runtime.getRuntime().availableProcessors() * 2; ThreadPoolExecutor executor = new ThreadPoolExecutor(corePoolSize, corePoolSize, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>()); ``` 在实际应用中,线程池的配置还需要考虑具体的应用场景和需求,以及系统的资源状况,可能需要经过多次调整和测试才能得到最优配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值