
Lidar Weather
文章平均质量分 95
恶劣天气下的激光雷达检测分割
Deathflower
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《CVPR2022 | LiDAR Snowfall Simulation for Robust 3D Object Detection 》阅读笔记
本文探讨了在降雪条件下,基于LiDAR的3D目标检测问题,这一任务对于自动驾驶应用至关重要,因为自动驾驶系统需要在各种天气条件下,准确地定位和分类周围的交通参与者。然而,在恶劣天气下采集和标注用于训练的数据集非常困难。为了解决这个问题,我们提出了一种基于物理的模拟方法,可以将降雪效果应用到晴天的LiDAR点云数据中。我们的方法通过为每条LiDAR线在2D空间中采样雪粒,使用几何关系来模拟雪粒对每条激光束测量的影响。此外,考虑到降雪会导致地面潮湿,我们还模拟了潮湿地面对点云的影响。原创 2024-11-01 17:54:58 · 870 阅读 · 0 评论 -
《ECCV2024 Oral | LidarWeather》
这篇论文针对恶劣天气条件下 LiDAR 语义分割性能下降的问题进行了研究。现有方法通常采用通用数据增强或仿真技术来处理这一问题,但这两种方法分别存在忽略 LiDAR 天气腐蚀问题和无法准确模拟所有天气情况的缺点。几何扰动和点云丢失。通过实验验证,这两种失真与分割性能的下降密切相关。基于这些发现,本文提出了针对这两种失真的数据增强方法,以在训练过程中增强模型对不同失真类型的鲁棒性。通过 LPD 的增强训练,LiDAR 分割模型在点云部分丢失的情况下,仍能准确预测。原创 2024-11-01 15:53:26 · 867 阅读 · 0 评论 -
《CVPR2021 | LISA》
这篇论文讨论了激光雷达(Lidar)在自主导航系统(如自动驾驶汽车)中的重要性,尤其是在3D感知流程中的应用。论文指出,Lidar物体检测器在恶劣天气条件(如雨、雪和雾)下的表现较差,因为信噪比(SNR)和信号与背景比(SBR)会受到影响。由于在各种恶劣天气下收集和标记训练数据的成本高昂且耗时,传统的训练方法往往无法解决这一问题。为了解决这一问题,论文提出了一种基于物理的模拟方法,用于在恶劣天气条件下生成Lidar点云数据。原创 2024-10-29 15:49:54 · 1630 阅读 · 0 评论