灰色理论在非平稳时序中的应用

这篇博客探讨了灰色理论如何在非平稳时间序列中用于预处理和建模。灰色理论,由刘聚龙教授提出,擅长处理小样本和不确定系统,特别是指数或类指数规律的对象。通过AGO处理,它可以提取并强化确定性信息,削弱随机性。GM(1,1)模型是其核心,包括叠加处理、近似估计和最小二乘解求解,用于提取指数趋势,残差数据则可用Arma模型进一步处理。" 126353012,11915645,SpringBoot2原理解析:Profile、starter与启动流程,"['Java', 'Spring Boot', '框架原理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

     灰色理论在非平稳时间序列中的应用,体现在对时序的预处理上。灰色理论是由我国学者刘聚龙教授提出的。它在处理小样本,贫信息不确定系统方面有突出作用。

 


 

     灰色理论善于处理具有指数或类指数规律的建模对象,得到的预测公式x(1)(t),x(0)(t) 具有指数项。利用这个特点,灰色理论(更确切的说是GM11)模型)可以提取非平稳时间序列的指数趋势项。AGO(累加生成处理)是GM1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值