C++Builder/Delphi中透明Panel及透明窗口的实现方法

    可能大多数程序员会问:透明窗口,特别是透明Panel有什么应用价值呢?可别小看它们哦,下面我就来讲讲他们的巨大作用。

    (1)透明窗口可以用于软件界面特效。大家可以看到很多软件的窗口出现或退出的时候是渐进或渐出的,而并非象Win98那样直接弹出窗口。这就是Win2000下所提供的功能。实现方法很简单:

    this->AlphaBlend=true;

    this->AlphaBlendValue=100;

    代码中this是窗口的指针,当然你不能在数据模块或是其他类里调用(废话)。代码更改了窗口的属性:AlphaBlend及AlphaBlendValue。AlphaBlend为true时窗口为透明状态,false时为不透明状态;AlphaBlendValue值为整型,可以取0~255的范围,0时为全透明,255时为全不透明,当然中间的值为半透明咯(爽)。而窗口渐进或渐出效果只要先将AlphaBlend设为true,然后在窗口显示或关闭时在一个循环语句中逐渐将AlphaBlendValue值改大或改小,就可以了(别忘了改完AlphaBlendValue后要刷新窗口哦:this->Refresh())。注意,窗口透明后,窗口上面的所有控件将跟随窗口透明。

    难道透明在窗口中的应用就如此而已吗?NO!!!还有更精彩的。窗口类还有两个属性:TransparentColor和TransparentColorValue。先将TransparentColor(bool型)设为true,然后再将TransparentColorValue(TColor型)设为你想设为透明的颜色,那么窗口上只要有这种颜色的地方将呈现透明状态。(爽爽爽)配合AlphaBlend及AlphaBlendValue属性,可以做出想不到的特效来。怎么做?不用我再写了吧。

    (2)透明Panel的实现方法。TPanel类有一大缺点:只能设置其颜色,要是想在上面放一幅bmp图或要透明的话无法实现;而它也有一大优点:因为他是从TWinControl类继承而来的,所以它的上面可以放其他控件,再就是它可以位于同级控件的上面。最后一句话什么意思?你把一个TPanel控件放到窗口上,再把一个TImage控件也放到窗口上,现在这两个控件的父都是窗口,而这两个控件属于同级关系,将Panel拖到Image上面盖住一部分,你会发现,无论你如何操作都无法用Image盖住Panel,即便你用了bring to front 或set to back命令,如果你将Image换成Panel的话,两个Panel无论谁盖住谁都可以了。这是因为TImage继承自TGraphicControl的缘故。而且凡继承自TGraphicControl的控件上面都不能放其他控件。你还可以发现TPanel类没有TCanvas属性,因此无法在上面画东西。

    怎么样实现透明,而且还可以显示背景图的Panel呢?答案就是自己重新做一个Panel出来,限与篇幅,我在这里不写代码,你想要的话,发个E-Mail给我:decsentangle@sohu.com 。然后我再把控件代码发给你(别担心,免费的)。C++Builder和Delphi代码都可以。

    究竟透明Panel有什么用呢?God save me,用处可大了,例如作为GIS系统中的图层。图层?当然如果你用过Photoshop或Flash的话。首先,透明Panel可以接受控件,那么你可以将点、线、面、图等控件放到它上面,而不是利用TCanvas去画它们,利用OOP(面向对象编程)技术你就可以方便的对他们进行操作,例如用户用鼠标点击一条线的时候,可以利用该线控件的OnMouseClick事件触发它,而如果是用TCanvas画出来的线,你就不得不去确定鼠标点击的坐标是否在这条线上。当然你还可以利用透明Panel代替普通Panel做出很多界面特效来。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
机器学习是一种人工智能(AI)的子领域,致力于研究如何利用数据和算法让计算机系统具备学习能力,从而能够自动地完成特定任务或者改进自身性能。机器学习的核心思想是让计算机系统通过学习数据的模式和规律来实现目标,而不需要显式地编程。 机器学习应用非常广泛,包括但不限于以下领域: 图像识别和计算机视觉: 机器学习在图像识别、目标检测、人脸识别、图像分割等方面有着广泛的应用。例如,通过深度学习技术,可以训练神经网络来识别图像的对象、人脸或者场景,用于智能监控、自动驾驶、医学影像分析等领域。 自然语言处理: 机器学习在自然语言处理领域有着重要的应用,包括文本分类、情感分析、机器翻译、语音识别等。例如,通过深度学习模型,可以训练神经网络来理解和生成自然语言,用于智能客服、智能助手、机器翻译等场景。 推荐系统: 推荐系统利用机器学习算法分析用户的行为和偏好,为用户推荐个性化的产品或服务。例如,电商网站可以利用机器学习算法分析用户的购买历史和浏览行为,向用户推荐感兴趣的商品。 预测和预测分析: 机器学习可以用于预测未来事件的发生概率或者趋势。例如,金融领域可以利用机器学习算法进行股票价格预测、信用评分、欺诈检测等。 医疗诊断和生物信息学: 机器学习在医疗诊断、药物研发、基因组学等领域有着重要的应用。例如,可以利用机器学习算法分析医学影像数据进行疾病诊断,或者利用机器学习算法分析基因数据进行疾病风险预测。 智能交通和物联网: 机器学习可以应用于智能交通系统、智能城市管理和物联网等领域。例如,可以利用机器学习算法分析交通数据优化交通流量,或者利用机器学习算法分析传感器数据监测设备状态。 以上仅是机器学习应用的一部分,随着机器学习技术的不断发展和应用场景的不断拓展,机器学习在各个领域都有着重要的应用价值,并且正在改变我们的生活和工作方式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值