深度学习专题交流(第09~10次课):梯度不稳定原因及解决方法

这篇博客探讨了导致深度神经网络(DNN)训练中梯度不稳定的问题,如梯度爆炸和梯度消失,并介绍了相应解决方案,包括参数初始化、使用非饱和激活函数、采用交叉熵损失函数、批量归一化等技术。此外,还提到了其他优化方法,如无监督预训练、超参数调试、改进的梯度下降算法和学习率衰减。下一部分将介绍卷积深度神经网络在图像处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可点击该链接浏览在线幻灯片:http://deepbodhi.club/static/1.html

本次课主要分析了导致DNN训练困难的梯度不稳定问题,并介绍了解决这类问题的几种方法。包括:

  • 参数初始化技术(梯度爆炸)
  • 用非饱和激活函数替代饱和激活函数(梯度弥散)
  • 用交叉熵损失函数替代MSE损失函数(梯度消失)
  • 批量归一化技术(内部协变量偏移)

当然,除了这些方法,还有很多优化DNN的方法,包括利用无监督逐层预训练进行初始化的技术、超参数调试技术、改进的梯度下降算法(动量梯度下降、Adam等)、学习率衰减等。对DNN优化感兴趣的可以进一步深入研究。下一讲将介绍在图像处理中更常用的卷积深度神经网络。
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值