- 博客(1660)
- 收藏
- 关注
原创 基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
本文介绍了如何使用PyTorch的Torchtune库进行大型语言模型(LLM)的微调。Torchtune提供了一套简单、灵活、高效的工具和框架,使得研究人员和开发者能够轻松地对LLM进行调试、训练和部署。文章详细介绍了Torchtune的设计原则、核心概念和主要特性,并通过一个完整的实例演示了如何使用Torchtune微调LLaMA-2-7B模型。此外,文章还介绍了两种参数高效的微调方法:LoRA和QLoRA。
2024-11-03 09:27:06 3832 1
原创 10种数据预处理中的数据泄露模式解析:识别与避免策略
数据泄露是机器学习中的一个常见问题,发生在不应被模型看到的数据(如测试数据或未来数据)意外地被用于训练模型时。这可能导致模型过拟合,并在新的、未见数据上表现不佳。我们将聚焦以下数据预处理步骤中的数据泄露问题。并将结合中的具体预处理方法,并在文章末尾给出代码示例。在预处理数据时,需要将训练数据和测试数据完全分开。任何时候使用来自所有数据的信息来转换值-无论是填充缺失值,将类别转换为数字,缩放特征,分箱还是平衡类-都有可能将测试数据信息混合到训练数据中。
2024-11-02 09:31:31 3814
原创 随机性、熵与随机数生成器:解析伪随机数生成器(PRNG)和真随机数生成器(TRNG)
随机性是指一系列事件或结果中不存在任何可预测模式或顺序。真正的随机性难以实现,特别是在计算机这样的确定性系统中,因为它们遵循特定的指令运行。在数学和计算领域,随机性对于实现无偏采样、密码安全以及确保模拟和随机化算法等过程的不可预测性至关重要。确定性随机性:由已知过程(如算法)生成,但呈现出随机特征。非确定性随机性:由自然界中不可预测的过程(如放射性衰变或大气噪声)产生。**随机数生成器(RNG)**是能够生成无特定模式数字序列的算法或硬件系统。伪随机数生成器(PRNG)
2024-11-01 09:37:43 3911
原创 Github上的十大RAG(信息检索增强生成)框架
RAG框架正在快速发展,呈现出百花齐放的盛况。从功能全面、久经考验的Haystack,到专注领域创新的FlashRAG和R2R,各具特色的框架为不同需求和应用场景提供了优质的选择。项目的具体需求和约束所需的定制化和灵活性框架的可扩展性和性能表现框架背后社区的活跃度和贡献度文档和技术支持的完备性通过系统评估并实际尝试不同的框架,我们可以找到最契合自身需求的RAG解决方案,用于构建更加智能、全面、有洞察力的人工智能应用。
2024-10-31 09:23:49 3694
原创 基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
平稳性是时间序列分析中的一个核心概念。如果一个时间序列的统计特性——均值、方差和自相关性——随时间保持不变,则称该时间序列是平稳的。简而言之,平稳时间序列不随时间变化而出现趋势周期性或变化的方差。从数学角度来看,如果满足以下条件,则时间序列**X(t)**是平稳的:平稳性有助于确保在序列样本中观察到的模式能代表整个数据集。这在预测中至关重要,因为非平稳数据通常会导致不准确或有偏差的模型。本文探讨了利用图论分析时间序列数据平稳性与连通性的方法。
2024-10-30 09:33:00 4623 1
原创 深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究
模型参数在训练过程中由优化器更新。相比之下,超参数是 “额外的” 参数,我们(深度学习实践者)可以控制。但是,我们实际上可以用超参数控制什么?一个常见的超参数,就是学习率。什么是学习率?简单地说,每次优化器更新神经网络的参数时,学习率控制这个更新的大小。我们应该大幅更新参数、小幅更新参数,还是介于两者之间?我们通过设置学习率来做出这个选择。选择一个好的学习率。设置学习率是训练神经网络最重要的方面之一。如果我们选择的值太大,训练就会发散。另一方面,如果学习率太小,可能会导致性能不佳和训练缓慢。
2024-10-28 09:41:28 4515 3
原创 过采样与欠采样技术原理图解:基于二维数据的常见方法效果对比
本文详细探讨了在不平衡数据集上进行分类任务时常用的过采样和欠采样技术。通过二维数据可视化示例,直观展现了各类采样方法的原理和效果差异。虽然过采样和欠采样是处理不平衡数据集的重要工具,但并非万能。不当的使用反而可能适得其反。因此在实际应用中,我们还需要根据具体问题,审慎选择恰当的方法。过采样和欠采样应作为综合治理策略的一部分,而非解决问题的灵丹妙药。希望这篇文章能为广大读者在不平衡分类问题上提供有价值的参考,帮助大家在机器学习的道路上不断进步。
2024-10-27 09:34:02 4434
原创 LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
LLM-Mixer通过结合多尺度时间序列分解和预训练的LLMs,提高了时间序列预测的准确性。它利用多个时间分辨率有效地捕捉短期和长期模式,增强了模型的预测能力。实验表明,LLM-Mixer在各种数据集上实现了具有竞争力的性能,优于最新的最先进方法。尽管LLM-Mixer展现出了优异的预测性能,但它仍然存在一些局限性。例如,使用预训练的语言模型可能会带来较大的计算开销,这可能限制了其在实时或大规模设置中的应用。模型的成功还取决于所使用提示的质量,这方面仍有进一步优化的空间。
2024-10-26 09:44:48 3152
原创 RAPTOR:多模型融合+层次结构 = 检索性能提升20%,结果还更稳健
在集成技术中,结合多个模型以实现比任何单一模型更优越的性能。其逻辑是不同的算法可能捕获数据相关性的不同方面,从而提高准确性和鲁棒性。因此使用"集成"一词,意思是"一起"。本文深入探讨了现代信息检索领域的技术创新,重点介绍了RAPTOR(Recursive Abstractive Processing for Tree-Organized Retrieval)框架。RAPTOR通过结合多个检索模型,构建层次化的信息组织结构,并采用递归摘要等技术,显著提升了检索系统的性能和适应性。
2024-10-25 09:36:44 3964
原创 梯度累积的隐藏陷阱:Transformer库中梯度累积机制的缺陷与修正
鉴于该问题影响了跨设备和小批量的梯度累积机制,可以推断过去若干年间的部分模型训练结果可能处于次优状态。研究结果表明其影响程度主要取决于具体的训练配置,尤其是涉及的GPU数量和梯度累积步骤数。采用大规模梯度累积步骤或高度可变序列长度进行训练的模型可能经历了次优的学习过程,这可能导致了下游任务性能的损失。随着该问题在Hugging Face Transformers框架中得到识别和修正,未来的模型训练和微调工作有望获得更优且更稳定的效果。
2024-10-24 09:33:02 3835
原创 TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
自监督学习是一种创新的学习范式,其特点是模型能够从未标记数据中通过内部生成的监督信号进行学习,通常这种学习通过预文任务来实现。与传统的监督学习不同,自监督学习不需要外部标签,而是利用数据本身的内在结构来创建必要的学习信号。ETT数据集系列:- ETTh1、ETTh2、ETTm1、ETTm2四个子集- 代表能源领域的时间序列数据其他领域数据集:- Weather数据集- Exchange数据集- Electricity数据集- Traffic数据集。
2024-10-23 11:33:01 4082
原创 11种经典时间序列预测方法:理论、Python实现与应用
本文详细介绍了11种经典的时间序列预测方法,从简单的自回归模型到复杂的多变量模型。每种方法都有其特定的应用场景和优缺点,没有一种模型可以适用于所有情况。选择合适的模型需要考虑数据特征、预测目标、可用资源和领域知识。在实践中,通常需要尝试多个模型并比较它们的性能。时间序列分析是一个广泛而深入的领域,本文仅涵盖了其中的一部分内容。随着机器学习和深度学习技术的发展,如长短期记忆网络(LSTM)和Prophet等新方法也越来越多地应用于时间序列预测。
2024-10-22 09:28:34 4221
原创 MoH:融合混合专家机制的高效多头注意力模型及其在视觉语言任务中的应用
MoH作为多头注意力的改进版本,在多个任务和模型框架中展现出了卓越的性能和效率。通过引入动态路由机制、共享头和两阶段路由等创新,MoH能够在减少激活头数的同时保持或提升模型性能。特别是MoH能够成功地应用于预训练模型的继续调优,这大大增强了其实用性。作者认为MoH为开发更先进和高效的基于注意力的模型奠定了坚实的基础,有望在学术研究和工业应用中产生深远影响。未来的工作将进一步探索MoH的潜力,包括在更多样化的任务、更大规模的模型和多模态场景中的应用。
2024-10-21 09:12:09 3948
原创 机器学习中空间和时间自相关的分析:从理论基础到实践应用
本文通过构建一个基于随机森林的预测模型,探讨了空间和时间自相关在野火风险预测中的应用。我们的模型展示了在处理复杂的时空数据方面的有效性,解释了约79%的火灾风险变异。时间和空间自相关在火灾风险预测中都起着重要作用。随机森林模型能够有效捕捉大部分的时空依赖性。火灾风险在空间上表现出明显的异质性和聚类模式。这些发现对于改进野火风险管理和制定针对性的预防策略具有重要意义。然而我们的模型仍有改进空间,特别是在处理更复杂的非线性关系和长期时间模式方面。整合更多环境和人为因素探索更高级的时空建模技术。
2024-10-20 09:17:34 3953
原创 特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
混杂变量是同时对公司销售和一个或多个营销渠道具有因果效应的变量。以我们的在线体育用品零售案例为例,"足球世界杯"就是一个典型的混杂变量。它会导致公司增加电视广告投资,同时也直接促进足球相关产品的销售。这种关系可以用以下因果图表示:图3:混杂变量的因果关系图中介变量是营销渠道通过它间接影响销售的变量。例如,在评估电视广告对销售的影响时,网站访问量可能是一个中介变量:图5:中介变量的因果路径图碰撞变量是同时受到我们感兴趣的原因变量(如营销渠道)和结果变量(如销售)影响的变量。
2024-10-19 09:43:07 4638 2
原创 lintsampler:高效从任意概率分布生成随机样本的新方法
lintsampler为从复杂概率分布中生成随机样本提供了一种简单、高效的解决方案。它结合了易用性和高性能,适用于广泛的科学计算和数据分析任务。对于需要处理非标准概率分布的研究人员和开发者来说,lintsampler是一个值得考虑的强大工具。lintsampler主页和文档地址作者:Aneesh Naik。
2024-10-18 09:56:23 4652
原创 基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文详细介绍了一种基于OpenFOAM和Python的流场动态分析方法。我们从OpenFOAM模拟数据的提取和处理开始,利用PyVista库高效地处理二维切片数据。通过正交分解(POD)成功捕捉了流场的主要能量结构,为动态模态分解(DMD)的应用奠定了基础。DMD分析进一步揭示了流场的动态特征,使我们能够深入理解方形圆柱周围的复杂流动现象。这种结合OpenFOAM、POD和DMD的综合分析方法,不仅提高了对复杂流体系统的认识,还为流体动力学研究提供了强大的工具。
2024-10-17 09:37:46 1246
原创 如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在特定问题上,非传统优化方法可能比标准的梯度下降算法(如Adam)表现更好。然而,这并不意味着这些方法在所有情况下都优于传统方法。对于参数数量较少(100-1000个)的优化问题,考虑尝试本文介绍的高级优化技术。在处理非可微操作或复杂的损失景观时,无梯度方法(如PSO、CMA-ES和SA)可能更有优势。对于需要满足复杂约束的优化问题,SLSQP可能是一个很好的选择。在计算资源有限的情况下,考虑使用仅需前向传播的方法,如PSO或SA。
2024-10-16 09:25:54 4371
原创 信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
本文深入探讨了信息论、机器学习和统计学中的几个核心概念:熵、KL散度、Jensen-Shannon散度和Renyi散度。这些概念不仅是理论研究的基石,也是现代数据分析和机器学习应用的重要工具。熵作为信息论的基础,为我们量化信息和不确定性提供了数学框架。而各种散度度量则进一步扩展了这一概念,使我们能够比较和分析不同的概率分布。KL散度凭借其在衡量分布差异方面的独特性质,在诸如变分推断、模型压缩等领域发挥着关键作用。
2024-10-15 09:39:48 4273
原创 数据准备指南:10种基础特征工程方法的实战教程
本文介绍了十种基本的特征工程技术,涵盖了数值型、分类型和文本型数据的处理方法。每种技术都有其特定的应用场景和优缺点。在实际应用中,选择合适的特征工程技术需要考虑数据的特性、问题的性质以及模型的要求。often需要结合多种技术来获得最佳的特征表示。还有许多其他高级的特征工程技术未在本文中涉及,如时间序列特征工程、图像特征提取等。随着机器学习和深度学习技术的发展,特征工程的重要性可能会有所变化,但理解和掌握这些基本技术仍然是数据科学实践中的重要基础。特征工程不仅是一门技术,更是一门艺术。
2024-10-14 09:27:45 4192
原创 三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
自注意力机制自2017年在开创性论文《Attention Is All You Need》中被提出以来,已成为最先进深度学习模型的核心,尤其是在自然语言处理(NLP)领域。考虑到其广泛应用,深入理解自注意力的运作机制变得尤为重要。图1:原始Transformer架构在深度学习中,"注意力"概念的引入最初是为了改进递归神经网络(RNNs)处理长序列或句子的能力。例如,在机器翻译任务中,逐字翻译通常无法捕捉语言的复杂语法和表达方式,导致翻译质量低下。
2024-10-13 09:48:49 5610 3
原创 多代理强化学习综述:原理、算法与挑战
MARL的正式定义如下:多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。在多代理环境中,每个代理面临的环境是动态变化的,因为其他代理也在不断学习和调整策略。随着研究的深入和技术的进步,MARL有望在更多复杂的实际问题中发挥关键作用,推动人工智能在多代理系统中的应用不断向前发展。这种方法面临的主要挑战是环境的非平稳性,因为从每个代理的角度来看,其他代理的行为变化会导致环境动态的变化。在下一部分中,我们将继续探讨更多高级MARL算法,以及多代理系统中的通信策略。
2024-10-12 09:40:25 4703
原创 边缘检测评估方法:FOM、RMSE、PSNR和SSIM对比实验和理论研究
边缘检测是计算机视觉中的基础技术,旨在识别图像中像素强度的边界或突变。这些边界或"边缘"可能代表物体轮廓、纹理过渡,或表面方向的显著变化。需要注意的是,利用图像分割的边界只是边缘检测的一种方法。其他方法包括直接输出边缘图的深度学习模型,以及基于梯度的方法,如Sobel或Canny算子。这些方法通过计算图像中像素强度的梯度或变化率来检测边缘。图3: 基于梯度的边缘检测算法输出示例最佳方法的选择取决于检测过程的具体目标。在某些情况下,我们可能需要找出图像中所有显著边缘。
2024-10-11 09:58:26 4424
原创 稀疏促进动态模态分解(SPDMD)详细介绍以及应用
在数据驱动分析领域,从复杂流体流动中提取有意义的模式一直是一个重大挑战。稀疏促进动态模态分解(Sparsity Promoting Dynamic Mode Decomposition, SPDMD)提供了一种有效方法,能够揭示最主要的特征,同时去除冗余信息,从而实现更高效和更具洞察力的分解。这种方法将动态模态分解(Dynamic Mode Decomposition, DMD)的数学优雅性与稀疏优化技术相结合,为识别高维数据中的关键结构提供了一个强大的框架。
2024-10-10 09:52:13 4197
原创 贝叶斯线性回归:概率与预测建模的融合
贝叶斯线性回归提供了一个强大的框架,用于理解和量化变量之间的关系。通过引入先验分布和考虑参数的不确定性,这种方法不仅能给出点估计,还能提供完整的后验分布,从而更全面地描述我们的知识状态。从简单的线性模型到更复杂的多项式回归和样条方法,我们看到了如何逐步增加模型的复杂性以捕捉数据中更细微的模式。线性回归适用于简单的线性关系,易于解释和实现。多项式回归可以捕捉一些非线性关系,但在数据范围边缘可能表现不佳。样条方法提供了更大的灵活性,能够适应复杂的非线性关系,同时保持局部的平滑性。
2024-10-09 11:15:59 4225
原创 图像数据增强库综述:10个强大图像增强工具对比与分析
本文详细介绍了10个广泛使用的图像数据增强库,每个库都有其独特的优势和适用场景。从高性能的GPU加速解决方案如Nvidia DALI,到灵活多功能的Albumentations和Imgaug,再到专注于特定框架的Kornia和Torchvision Transforms,这些工具为不同需求的用户提供了丰富的选择。选择合适的数据增强库对项目的成功至关重要。性能需求:对于大规模数据集,可能需要考虑如Nvidia DALI这样的高性能解决方案。
2024-10-08 09:39:07 4687
原创 FredNormer: 非平稳时间序列预测的频域正则化方法
FredNormer通过在频域中处理非平稳性,为时间序列预测提供了一种新的视角。它不仅在理论上分析了现有方法的局限性,还提出了一种简单而有效的解决方案。实验结果表明,FredNormer在多个数据集和预测模型上都取得了显著的性能提升,同时保持了较低的计算开销。这种方法为处理复杂的非平稳时间序列数据提供了一个强大而灵活的工具。
2024-10-07 09:29:00 4886 2
原创 模型无关的局部解释(LIME)技术原理解析及多领域应用实践
LIME(Local Interpretable Model-Agnostic Explanations)是一种解释技术,能以人类可理解的方式阐释任何机器学习分类器的预测结果。它可以被视为一个高效的解释器,能将复杂的AI模型转化为易懂的术语,无论原始模型的类型如何。LIME代表了可解释AI领域的重大进展,为企业提供了一个强大的工具来洞察其AI模型的决策过程。自2016年Marco Ribeiro及其同事引入以来,LIME已成为数据科学家工具箱中不可或缺的技术,帮助缩小复杂AI系统和人类理解之间的鸿沟。
2024-10-06 09:51:00 5097 3
原创 PAIRDISTILL: 用于密集检索的成对相关性蒸馏方法
在当今海量数据时代,有效的信息检索(IR)技术对于从庞大数据集中提取相关信息至关重要。近年来,密集检索技术展现出了相比传统稀疏检索方法更加显著的效果。现有的方法主要从点式重排序器中蒸馏知识,这些重排序器为文档分配绝对相关性分数,因此在进行比较时面临不一致性的挑战。为解决这一问题,来自国立台湾大学的研究者Chao-Wei Huang和Yun-Nung Chen提出了一种新颖的方法——成对相关性蒸馏(Pairwise Relevance Distillation, PAIRDISTILL)。
2024-10-05 18:42:32 1289
原创 扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
随着大型语言模型(LLMs)的迅速普及,如何有效地引导它们生成安全、适合特定应用和目标受众的内容成为一个关键挑战。例如,我们可能希望语言模型在与幼儿园孩子互动时使用不同的语言,或在撰写喜剧小品、提供法律支持或总结新闻文章时采用不同的风格。目前,最成功的LLM范式是训练一个可用于多种任务的大型自回归模型。为了解决这些挑战,研究者提出了一种新的框架:扩散引导语言建模(Diffusion Guided Language Modeling, DGLM)。
2024-10-04 13:53:58 1109
原创 SCoRe: 通过强化学习教导大语言模型进行自我纠错
实验结果表明,SCoRe显著提高了大语言模型的内在自我纠错能力。Accuracy@t1: 模型在第一次尝试时的准确率Accuracy@t2: 模型在第二次尝试时的准确率Δ(t1, t2): 模型在第一次和第二次尝试之间准确率的净改善,衡量了自我纠错的有效性Δi→c(t1, t2): 在第一次尝试中错误但在第二次尝试中变正确的问题比例,衡量了自我纠错能解决多少新问题Δc→i(t1, t2): 在第一次尝试中正确但在第二次尝试中变错误的问题比例,衡量了模型对什么使回答正确的理解程度。
2024-10-03 11:44:31 4946 3
原创 VisionTS:基于时间序列的图形构建高性能时间序列预测模型,利用图像信息进行时间序列预测
VisionTS是一种创新的预训练掩码视觉Transformer模型,它巧妙地将图像重构任务转化为时间序列预测。由于MAE原本是设计用于处理图像的,我们需要将时间序列数据转换为分块图像作为输入。在模型推理后,输出再被转换回时间序列形式,从而生成预测结果。这个过程如图3所示:**图3:**使用MAE将时间序列转换为图像并生成预测的详细流程首先为时间序列选择一个回溯窗口(L),然后根据其周期性(P)将序列分割成块。这产生了[L/P]个块,它们被堆叠形成一个P × [L/P]大小的2D矩阵。
2024-10-02 19:54:11 1679
原创 闭源与开源嵌入模型比较以及提升语义搜索效果的技术探讨
对于嵌入技术的新手,希望本文能为你提供有价值的见解。对于已经熟悉这一领域的读者,希望本文关于使用较小与较大嵌入模型的经济性分析能够带来新的思考。值得注意的是,在大型语言模型(LLM)领域,许多闭源模型正在领先;但在嵌入模型方面,情况并非如此。本文的一个重要结论是:不要忽视较小的、计算效率更高的模型。它们可能在特定任务中表现出色,同时提供更高的成本效益。作者:Ida Silfverskiöld。
2024-10-01 10:03:04 5805 5
原创 Minstrel自动生成结构化提示,让AI为AI写提示词的多代理提示生成框架
LangGPT作为一个结构化的提示设计框架,具有良好的系统性和可重用性,易于学习和使用。Minstrel能够通过多代理协作自动生成高质量的结构化提示,在某些情况下甚至超过人类专家的表现。结构化提示(无论是Minstrel生成还是手动编写)在指导LLMs执行任务时表现更好,特别是对于较大规模的模型。然而,研究也发现了一些局限性,特别是结构化提示对低性能LLMs的适应性较差。进一步优化提示设计,特别是针对低性能LLMs的优化。
2024-09-30 09:53:39 4859
原创 在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
加载预训练的ResNet18模型# 修改最后的全连接层以适应新的分类任务num_classes=10 # 假设新任务有10个类别层级学习率设置是一种强大的优化技术,特别适用于迁移学习和微调预训练模型的场景。通过精心设计的学习率策略,可以在保留预训练模型通用特征的同时有效地适应新任务。结合其他高级技巧,如渐进式解冻、层适应学习率,可以进一步提升模型的训练效率和性能。在实际应用中,最佳的学习率配置往往需要通过实验来确定。建议研究者根据具体任务和模型架构进行适当的调整和实验,以获得最佳的训练效果。
2024-09-29 09:48:18 4679
原创 TimeMOE: 使用稀疏模型实现更大更好的时间序列预测
这两个指标用于衡量预测值与实际值之间的差异。- 在零样本和微调场景下,TimeMOE在这些指标上都显著优于基线模型。- 与同等规模的密集模型相比,TimeMOE在训练成本上平均降低了78%,推理成本降低了39%。- 在六个基准数据集上的零样本预测任务中,TimeMOE平均减少了23%的预测误差。- 在下游任务的微调场景中,TimeMOE平均减少了25%的预测误差。- 研究者展示了随着模型规模从5000万参数扩展到24亿参数,性能持续提升。
2024-09-28 09:42:11 4849 3
原创 8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,特征工程通常涉及对现有数据应用转换,以生成或修改数据,这些转换后的数据在机器学习和数据科学的语境下用于训练模型,从而提高模型性能。本文主要介绍处理数值变量特征工程,将探讨使用Python的Scikit-Learn库、Numpy等工具处理数值的高级,旨在提升机器学习模型的效能。特征优化是提升机器学习模型质量的核心要素,尤其在分析复杂数据集时。精确实施这些特征优化技术可显著提升机器学习模型的性能。这些改进体现在模型性能的多个方面,从预测能力到可解释性。
2024-09-27 10:08:22 5692 1
原创 MAGICORE:基于多代理迭代的粗到细精炼框架,提升大语言模型推理质量
过程从Solver为每个问题生成k个推理链开始,然后ORM和PRM提供解决方案级别的分数。接下来,根据两个标准对输入问题的难度进行分类:(1)多数答案的质量和(2)RM的答案置信度。只有当问题被认为是困难的时候才启动精炼,这发生在多数答案获得低平均RM分数且答案分布平坦的情况下 - 表明没有单个答案明显优于其他答案(即低置信度)。对于这些困难问题,论文采用具有三个代理的多代理设置:Solver、Reviewer和Refiner。
2024-09-26 09:59:02 5231 5
原创 PyTorch自定义学习率调度器实现指南
实现自定义学习率调度器后,下一步是将其集成到训练流程中。# 定义模型(此处使用简单的线性模型作为示例)# 初始化优化器# 初始化自定义学习率调度器# 训练循环# 在每个epoch结束时更新学习率# 记录当前学习率(用于监控)定义模型和优化器。使用之前实现的初始化学习率调度器。在每个训练epoch中:- 执行标准的前向传播、损失计算和反向传播步骤。- 调用更新模型参数。- 在epoch结束时调用更新学习率。使用获取并记录当前学习率,用于监控训练过程。
2024-09-25 09:46:30 4665
原创 AdEMAMix: 一种创新的神经网络优化器
这是9月发布的一篇论文,Pagliardini等人在其论文中提出了一种新的优化算法——AdEMAMix。这种算法旨在解决当前广泛使用的Adam及其变体(如AdamW)在利用长期梯度信息方面的局限性。研究者们通过巧妙地结合两个不同衰减率的指数移动平均(EMA),设计出了这种新的优化器,以更有效地利用历史梯度信息。
2024-09-24 09:28:26 3929
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人