deephub
码龄2年
  • 4,141,564
    被访问
  • 776
    原创
  • 321
    排名
  • 2,457
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2020-03-08
博客简介:

deephub

博客描述:
关注同名微信公众号,获取更多AI干货
查看详细资料
  • 9
    领奖
    总分 12,028 当月 495
个人成就
  • 获得1,527次点赞
  • 内容获得655次评论
  • 获得10,243次收藏
创作历程
  • 141篇
    2022年
  • 359篇
    2021年
  • 297篇
    2020年
成就勋章
TA的推广
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorchnlp数据分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Python 3.11比3.10 快60%:使用冒泡排序和递归函数对比测试

Python 3.11 pre-release已经发布。更新日志中提到:Python 3.11 is up to 10–60% faster than Python 3.10. On average, we measured a 1.25x speedup on the standard benchmark suite. See Faster CPython for details. — Python 3.11 Changelog.Python 在生产系统上的速度一直是被新手对比和吐槽。,因为真的并不块
原创
发布博客 9 小时前 ·
1497 阅读 ·
0 点赞 ·
0 评论

多目标追踪小抄:快速了解MOT的基本概念

多目标跟踪(Multiple Object Tracking)MOT 获取单个连续视频并以特定帧速率 (fps) 将其拆分为离散帧以输出检测每帧中存在哪些对象标注对象在每一帧中的位置关联不同帧中的对象是属于同一个对象还是属于不同对象MOT的典型应用多目标跟踪(MOT)用于交通控制、数字取证的视频监控手势识别机器人技术增强现实自动驾驶MOT 面临的挑战准确的对象检测的问题是未能检测到对象或者为检测到的对象分配错误的类别标签或错误地定位已识别的对象:ID Switching
原创
发布博客 昨天 10:19 ·
2229 阅读 ·
0 点赞 ·
0 评论

一个简单实例解析移动平均模型 Moving-Average Models

本文将使用简单的说明性示例来解释移动平均模型(Arima [p,q]中的MA [Q])。假设你今天得到100股公司股票。让我们用Y1表示今年,用A(1)表示回报。再假设从明年开始,每年授予25%的股票,为期四年。以下是一段时间内未授予股票的数量:此外,在Y2,获得了100股,加上A(1)的75股未授予股份。我们称它为A(2)回报。它与a(1)有相似的授予时间表,25%的股份在4年内授予。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DQzDB8sx-165267316
原创
发布博客 前天 11:53 ·
2203 阅读 ·
0 点赞 ·
0 评论

多层感知机还在进步,关于深度学习中MLP的5篇最新的论文推荐

1、MLP-Hash: Protecting Face Templates via Hashing of Randomized Multi-Layer Perceptronhttps://arxiv.org/pdf/2204.11054.pdfHatef Otroshi Shahreza, Vedrana Krivokuća Hahn, Sébastien Marcel用于身份验证的人脸识别系统的应用正在迅速增长。尽管最先进的(SOTA)人脸识别系统具有很高的识别性能,但为他们会为每个用户提取特征并存
原创
发布博客 2022.05.15 ·
2287 阅读 ·
0 点赞 ·
0 评论

3 个不常见但非常实用的Pandas 使用技巧

在本文中,将演示一些不常见,但是却非常有用的 Pandas 函数。创建一个示例 DataFrame 。import numpy as npimport pandas as pddf = pd.DataFrame({ "date": pd.date_range(start="2021-11-20", periods=100, freq="D"), "class": ["A","B","C","D"] * 25, "amount": np.random.randint(10,
原创
发布博客 2022.05.14 ·
2346 阅读 ·
0 点赞 ·
0 评论

端到端的特征转换示例:使用三元组损失和 CNN 进行特征提取和转换

虽然大多数的特征策略都与领域相关,并且必须针对每个应用程序进行专门调整。但特征工程是操纵原始数据和提取机器学习特征的过程,探索性数据分析 (EDA) 可以使用特征工程技术来可视化数据并在执行机器学习任务之前更好地识别模式和异常值。这是数据科学的重要一步,可以确保特定机器学习应用程序的预期结果。使用 EDA 和特征工程的组合具有多种优势:提高准确性减少训练时间减少过拟合简化模型特征工程技术有多种特征工程方法可以用于机器学习的各种特定应用和数据类型。这些可以包括:转换——缩放或编码数据以便
原创
发布博客 2022.05.13 ·
2336 阅读 ·
0 点赞 ·
0 评论

新论文使用LSTM挑战长序列建模的 ViT

不到两年的时间ViT 已经彻底改变了计算机视觉领域,利用transformers 强大的自注意机制来替代卷积,最近诸如 MLP-Mixer 和通过精心设计的卷积神经网络 (CNN) 等方法也已经实现了与 ViT 相当的性能。在新论文 Sequencer: Deep LSTM for Image Classification 中,来自Rikkyo University 和 AnyTech Co., Ltd. 的研究团队检查了不同归纳偏差对计算机视觉的适用性,并提出了 Sequencer,它是 ViT 的一种
原创
发布博客 2022.05.12 ·
2265 阅读 ·
0 点赞 ·
0 评论

GAN能进行股票预测吗?

机器学习是未能完全解决的一个领域是股票预测,因为它可能是最有利可图的研究领域之一所以在这方面的研究仍然在继续。投资者希望能够放心地把钱投在表现优异的公司,随着投资的增加,公司的发展也将会突飞猛进,投资的收益也会增长。在过去的研究中,出现了而很多的方式,但这些方式和方法并不是很成功,所以本文将这个领域的研究扩展到GANs。看看GANs这个领域是否能够进行预测。虽然kaggle中的预测JPX市场预测是一个非常好的数据集,但是他的数据集需要在kaggle上进行预测和提交,所以这里使用使用他的子集并且指定针对
原创
发布博客 2022.05.11 ·
2435 阅读 ·
0 点赞 ·
0 评论

Residual, BottleNeck, Inverted Residual, MBConv的解释和Pytorch实现

上篇ConvNext的文章有小伙伴问BottleNeck,Inverted Residual的区别,所以找了这篇文章,详细的解释一些用到的卷积块,当作趁热打铁吧在介绍上面的这些概念之间,我们先创建一个通用的 conv-norm-act 层,这也是最基本的卷积块。fromfunctoolsimportpartialfromtorchimportnnclassConvNormAct(nn.Sequential): def__init__( self, in_fe
原创
发布博客 2022.05.10 ·
2305 阅读 ·
0 点赞 ·
0 评论

使用PyTorch复现ConvNext:从Resnet到ConvNext的完整步骤详解

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QzSpL26A-1652067254818)(http://images.overfit.cn/upload/20220509/bbdccec911fc47e286ee2361fd9f8810.png)]ConvNext论文提出了一种新的基于卷积的架构,不仅超越了基于 Transformer 的模型(如 Swin),而且可以随着数据量的增加而扩展!今天我们使用Pytorch来对其进行复现。下图显示了针对不同数据集/模型大小的
原创
发布博客 2022.05.09 ·
2410 阅读 ·
0 点赞 ·
0 评论

统计学小抄:常用术语和基本概念小结

统计学是涉及数据的收集,组织,分析,解释和呈现的学科。统计的类型描述性统计描述性统计是以数字和图表的形式来理解、分析和总结数据。对不同类型的数据(数值的和分类的)使用不同的图形和图表来分析数据,如条形图、饼图、散点图、直方图等。所有的解释和可视化都是描述性统计的一部分。重要的是要记住,描述性统计可以在样本和总体数据上执行,但并不会使用总体数据。推论统计从总体数据中提取一些数据样本,然后从这些数据样本中,推断一些东西(结论)。数据样本被用作对该总图作出结论的基础。这可以通过各种技术来实现,比
原创
发布博客 2022.05.08 ·
2398 阅读 ·
0 点赞 ·
0 评论

Pycaret 3.0的RC版本已经发布了,什么重大的改进呢?

Pycaret是Python中的一个开源可自动化机器学习工作流程的低代码机学习库。它是一种端到端的机器学习和模型管理工具。要了解有关Pycaret的更多信息,可以查看官方网站或GitHub。1、与最新版本的Scikit-Learn完全兼容Pycaret 2.x需要Scikit-Learn 0.23.2,如果您想在同一Python环境中使用Scikit-Learn和Pycaret的最新版本是不可能的,但是 Pycaret 3.0将与Scikit-Learn的最新版本完全兼容。2、面向对象的APIPyC
原创
发布博客 2022.05.07 ·
2357 阅读 ·
0 点赞 ·
0 评论

神经网络与傅立叶变换有关系吗?

机器学习和深度学习中的模型都是遵循数学函数的方式创建的。从数据分析到预测建模,一般情况下都会有数学原理的支撑,比如:欧几里得距离用于检测聚类中的聚类。傅里叶变换是一种众将函数从一个域转换到另一个域的数学方法,它也可以应用于深度学习。本文将讨论傅里叶变换,以及如何将其用于深度学习领域。什么是傅里叶变换?在数学中,变换技术用于将函数映射到与其原始函数空间不同的函数空间。傅里叶变换时也是一种变换技术,它可以将函数从时域空间转换到频域空间。例如以音频波为例,傅里叶变换可以根据其音符的音量和频率来表示它。我
原创
发布博客 2022.05.06 ·
2361 阅读 ·
0 点赞 ·
0 评论

5分钟NLP:文本分类任务中的数据增强技术

为什么要增加训练数据机器学习中的数据增强主要通过人工构建数据,增加训练集的大小使模型达到更好的泛化特性。这是一个在机器学习学科中进行的广泛研究的研究领域。数据增强的主要作用如下:增加了模型的概括功能;对于不平衡数据集很有用;可以最大程度地减少标注工作;提高了针对对抗性攻击的健壮性;一般情况下文本分类中的数据增强会产生更好的模型,因为模型在训练过程中会看到更多的语言模式。但是现在这种数据增强的工作是通过在大型预训练语言模型上的迁移学习来管理的,因为这些模型对于我们使用的各种转换已经不敏感了。
原创
发布博客 2022.05.05 ·
2388 阅读 ·
0 点赞 ·
0 评论

Micro-Outlier Removal: 一种Kaggle快速提分的小技巧

Micro-Outlier Removal:这个词听起来不错。但是这个术语是本文的作者首创的。所以应该找不到其他相关的资料,但是看完本篇文章你就可以了解这个词的含义。在Kaggle 的《Titanic》排行榜中,作者使用这项技术获得了巨大排名飞跃-在使用这个技术之前排名是12616[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TwSr3BFl-1651625848832)(http://images.overfit.cn/upload/20220504/5055961
原创
发布博客 2022.05.04 ·
2325 阅读 ·
0 点赞 ·
0 评论

Pandas 对数值进行分箱操作的4种方法总结对比

分箱是一种常见的数据预处理技术有时也被称为分桶或离散化,他可用于将连续数据的间隔分组到“箱”或“桶”中。在本文中,我们将讨论使用 python Pandas 库对数值进行分箱的 4 种方法。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yh8qGzOI-1651545800864)(http://images.overfit.cn/upload/20220503/4e8aeb2f82a54719bac9ee6c30407321.jpeg)]我们创建以下合成数据用于演示i
原创
发布博客 2022.05.03 ·
2378 阅读 ·
0 点赞 ·
0 评论

2022年关于损失函数的5篇最新论文推荐

1、Hybridised Loss Functions for Improved Neural Network GeneralisationMatthew C. Dickson, Anna S. Bosman, Katherine M. Malanhttps://arxiv.org/pdf/2204.12244.pdf损失函数在人工神经网络 (ANN) 的训练中发挥着重要作用,并且会影响 ANN 模型的泛化能力以及其他属性。已经有研究表明交叉熵和平方和误差损失函数会导致不同的训练结果,并表现出相互补.
原创
发布博客 2022.05.02 ·
2390 阅读 ·
0 点赞 ·
0 评论

BRIO:抽象文本摘要任务新的SOTA模型

在 SimCLS [2]论文发布后不久,作者又发布了抽象文本摘要任务的SOTA结果 [1]。BRIO在上述论文的基础上结合了对比学习范式。BRIO解决什么问题?上图显示 seq2seq 架构中使用的传统 MLE 损失与无参考对比损失之间的差异。我们通常使用最大似然估计(Maximum Likelihood Estimation, MLE)损失来训练序列模型。但是论文认为我们使用的损失函数将把一个本质上可能有多个正确输出(非确定性)的任务的“正确”输出(确定性)赋值为零。训练和推理过程之间也存在差异,
原创
发布博客 2022.05.01 ·
2474 阅读 ·
1 点赞 ·
1 评论

1行代码完成可视化:Seaborn3个常用方法示例

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2mfqYd65-1651286715491)(http://images.overfit.cn/upload/20220430/2deb1799b2b9497b8794c97c63fbc84f.jpeg)]数据可视化基本上是数据的图形表示。在探索性数据分析中,可以使用数据可视化来理解变量之间的关系,还可以通过视化数据揭示底层结构或了解数据信息。有多种工具可以帮助我们创建数据可视化。Seaborn就是其中之一 ,它是一个流行的
原创
发布博客 2022.04.30 ·
2374 阅读 ·
0 点赞 ·
0 评论

特征选择:11 种特征选择策略总结

太多的特征会增加模型的复杂性和过拟合,而太少的特征会导致模型的拟合不足。将模型优化为足够复杂以使其性能可推广,但又足够简单易于训练、维护和解释是特征选择的主要工作。“特征选择”意味着可以保留一些特征并放弃其他一些特征。本文的目的是概述一些特征选择策略:删除未使用的列删除具有缺失值的列不相关的特征低方差特征多重共线性特征系数p 值方差膨胀因子 (VIF)基于特征重要性的特征选择使用 sci-kit learn 进行自动特征选择主成分分析 (PCA)该演示的数据集在 MIT 许可下
原创
发布博客 2022.04.29 ·
2430 阅读 ·
0 点赞 ·
0 评论
加载更多