Python 3.14 将比 C++ 更快

博客分析了Python3.11版本相对于早期版本在数据科学和机器学习任务中的速度提升,并通过蒙特卡洛方法估算Pi来对比Python与C++的执行效率。结果显示,Python3.11在执行速度上已经接近C++,并且预测未来的版本可能实现超越。文章使用Docker进行跨版本测试,并提供了C++的基准测试作为参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 是数据科学 (DS) 和机器学习 (ML) 中最常用的脚本语言之一。根据“PopularitY of Programming Languages”,Python 是 Google 上搜索次数最多的语言。除了作为将各种 DS/ML 解决方案连接在一起的出色胶水语言之外,它还有许多库可以对数据进行方便处理。

我们以前也发过文章做过一些3.11 版的测试。因为这个版本的主要特点是速度显着提高。

在这篇文章中,是国外的一个大佬进行的数据分析,通过他的分析可以证明Python 3.14 将比 C++更快。

本文的方法是:使用蒙特卡洛方法估计 Pi。

这个算法的想法很简单,但是在大学的一些数学课程中都会有介绍:有一个大小为 2r 的正方形,在这个正方形中我们拟合一个半径为 r 的圆。采用一个在平面上生成数字的随机数生成器:<-r, r>, <-r, r>。圆上的点与正方形上的点之间的比率(读取:所有点)是面积比的近似值,我们可以用它来近似 Pi。公式如下

将实际估计与测试脚本分开,这样就可以重复测试并取平均值。这里还是用 Argparse 对脚本进行了参数化,Argparse 是一个用于解析来自命令行界面 (CLI) 的参数的标准库。Python 代码如下所示:

 def estimate_pi(
     n_points: int,
     show_estimate: bool,
 ) -> None:
     """
     Simple Monte Carlo Pi estimation calculation.
     Parameters
     ----------
     n_points
         number of random numbers used to for estimation.
     show_estimate
         if True, will show the estimation of Pi, otherwise
         will not output anything.
     """
     within_circle = 0
 
     for _ in range(n_points):
         x, y = (random.uniform(-1, 1) for v in range(2))
         radius_squared = x**2 + y**2
 
         if radius_squared <= 1:
             within_circle += 1
 
     pi_estimate = 4 * within_circle / n_points
 
     if not show_estimate:
         print("Final Estimation of Pi=", pi_estimate)
 
 
 def run_test(
     n_points: int,
     n_repeats: int,
     only_time: bool,
 ) -> None:
     """
     Perform the tests and measure required time.
     Parameters
     ----------
     n_points
         number of random numbers used to for estimation.
     n_repeats
         number of times the test is repeated.
     only_time
         if True will only print the time, otherwise
         will also show the Pi estimate and a neat formatted
         time.
     """
     start_time = time.time()
 
     for _ in range(n_repeats):
         estimate_pi(n_points, only_time)
 
     if only_time:
         print(f"{(time.time() - start_time)/n_repeats:.4f}")
     else:
         print(
             f"Estimating pi took {(time.time() - start_time)/n_repeats:.4f} seconds per run."
         )

测试多个 Python 版本的最简单方法是使用 Docker。 要使用 Docker需要安装它。在 Linux 和 Mac 中它相对容易,在 Windows 中稍微复杂一些。虽然Docker中运行会有一些效率的降低,但是测试都在Docker进行,所以误差就可以忽略了。要在容器化 Python 环境中运行本地脚本,可以使用下面命令:

 docker run -it --rm \
   -v $PWD/your_script.py:/your_script.py \
   python:3.11-rc-slim \
   python /yourscript.py

我们也是用python脚本来自动化这个过程

 def test_version(image: str) -> float:
     """
     Run single_test on Python Docker image.
     Parameter
     ---------
     image
         full name of the the docker hub Python image.
     Returns
     -------
     run_time
         runtime in seconds per test loop.
     """
     output = subprocess.run([
             'docker',
             'run',
             '-it',
             '--rm',
             '-v',
             f'{cwd}/{SCRIPT}:/{SCRIPT}',
             image,
             'python',
             f'/{SCRIPT}',
             '--n_points',
             str(N_POINTS),
             '--n_repeats',
             str(N_REPEATS),
             '--only-time',
         ],
         capture_output=True,
         text=True,
     )
 
     avg_time = float(output.stdout.strip())
 
     return avg_time
 
 
 # Get test time for current Python version
 base_time = test_version(NEW_IMAGE['image'])
 print(f"The new {NEW_IMAGE['name']} took {base_time} seconds per run.\n")
 
 # Compare to previous Python versions
 for item in TEST_IMAGES:
     ttime = test_version(item['image'])
     print(
         f"{item['name']} took {ttime} seconds per run."
         f"({NEW_IMAGE['name']} is {(ttime / base_time) - 1:.1%} faster)"
     )

这些测试时的结果具体取决于CPU 。以下是7 个主要 Python 版本的结果:

 The new Python 3.11 took 6.4605 seconds per run.
 
 Python 3.5 took 11.3014 seconds.(Python 3.11 is 74.9% faster)
 Python 3.6 took 11.4332 seconds.(Python 3.11 is 77.0% faster)
 Python 3.7 took 10.7465 seconds.(Python 3.11 is 66.3% faster)
 Python 3.8 took 10.6904 seconds.(Python 3.11 is 65.5% faster)
 Python 3.9 took 10.9537 seconds.(Python 3.11 is 69.5% faster)
 Python 3.10 took 8.8467 seconds.(Python 3.11 is 36.9% faster)

Python 3.11 的基准测试平均耗时 6.46 秒。与之前的版本 (3.10) 相比,这几乎快了 37%。3.9 版和 3.10 版之间的差异大致相同,在下图中我们进行这个数据的可视化:

在谈论速度时,人们总是说:如果你想要速度,为什么不使用 C。

  C 比 Python 快得多!

这里使用了 GNU C++,因为它带有一个不错的时间测量库(chrono),我们的c++代码如下:

 #include <stdlib.h>
 #include <stdio.h>
 #include <chrono>
 #include <array>
 
 #define N_POINTS 10000000
 #define N_REPEATS 10
 
 float estimate_pi(int n_points) {
    double x, y, radius_squared, pi;
    int within_circle=0;
 
    for (int i=0; i < n_points; i++) {
       x = (double)rand() / RAND_MAX;
       y = (double)rand() / RAND_MAX;
 
       radius_squared = x*x + y*y;
       if (radius_squared <= 1) within_circle++;
    }
 
    pi=(double)within_circle/N_POINTS * 4;
    return pi;
 }
 
 int main() {
     double avg_time = 0;
 
     srand(42);
 
     for (int i=0; i < N_REPEATS; i++) {
         auto begin = std::chrono::high_resolution_clock::now();
         double pi = estimate_pi(N_POINTS);
         auto end = std::chrono::high_resolution_clock::now();
         auto elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin);
         avg_time += elapsed.count() * 1e-9;
         printf("Pi is approximately %g and took %.5f seconds to calculate.\n", pi, elapsed.count() * 1e-9);
     }
 
     printf("\nEach loop took on average %.5f seconds to calculate.\n", avg_time / N_REPEATS);
 }

C++ 是一种编译语言,我们需要先编译源代码才能使用它:

 g++ -o pi_estimate pi_estimate.c

编译后,运行构建的可执行文件。输出如下:

 Pi is approximately 3.14227 and took 0.25728 seconds to calculate.
 Pi is approximately 3.14164 and took 0.25558 seconds to calculate.
 Pi is approximately 3.1423 and took 0.25740 seconds to calculate.
 Pi is approximately 3.14108 and took 0.25737 seconds to calculate.
 Pi is approximately 3.14261 and took 0.25664 seconds to calculate.
 
 Each loop took on average 0.25685 seconds to calculate.

相同循环只需要 0.257 秒。让我们在之前的图中将其添加为一条线,如下所示。

我们清楚地看到了C++很快,但是Python 开发人员提到,接下来的几个版本将会显着提高速度,在这个假设的前提下,我们的绝活就要来了,请大家理清思路注意观看。

我们以假设这个速度会保持下去(是的,超级安全的假设🙃)。在这种势头固定的情况下,Python 何时会超越 C++ 呢。我们当然可以使用外推法来预测下几个 Python 版本的循环时间,见下图

看到了吧,经过我们的严密的分析和预测,如果保持这个速度,Python 3.14 将比 C++ 更快。确切地说,运行完我们测试的时间为 -0.232 秒,它会在我们想要进行计算之前完成(太棒了🤣)。

下面就是免责声明的时间:

python 3.11的速度的有了很大的进步,虽然与编译语言相比还差了很多但是开发团队还在速度优化这个方向努力,所以希望Python的运行速度还有更大的进步。以上只是大佬开的一个玩笑,但上面的代码都可以在下面的链接找到,所以我们的结论还是有根据的😏

https://avoid.overfit.cn/post/a99fac9aad1e4b398e17fa07bf394d3b

作者:Denn·is Bakhuis

### CentOS 7 上安装 Python 3.14 的方法 在 CentOS 7 中,默认情况下可能只提供较低版本的 Python(通常是 Python 2.x)。为了安装更高版本的 Python,例如 Python 3.14,可以按照以下方式操作: #### 使用源码编译安装 Python 3.14 由于官方仓库通常不支持最新版 Python,因此推荐通过源码编译的方式手动安装。 1. **更新系统并安装依赖工具** 需要先确保系统的开发工具已安装完毕。 ```bash sudo yum groupinstall "Development Tools" -y sudo yum install gcc make wget zlib-devel bzip2 bzip2-devel readline-devel sqlite sqlite-devel openssl-devel tk-devel libffi-devel xz-devel -y ``` 2. **下载 Python 源码包** 可以从官方网站获取对应版本的压缩包[^1]。 ```bash cd /usr/src sudo wget https://www.python.org/ftp/python/3.14.0/Python-3.14.0.tgz ``` 3. **解压并配置编译选项** 解压后进入目录,并运行 `./configure` 脚本来设置安装路径和其他参数。 ```bash sudo tar xf Python-3.14.0.tgz cd Python-3.14.0 sudo ./configure --enable-optimizations --prefix=/usr/local/python3.14 ``` 4. **执行编译与安装** 编译过程可能会花费一些时间,具体取决于服务器性能。 ```bash sudo make altinstall ``` 这里使用的是 `altinstall` 命令而不是普通的 `make install`,目的是为了避免覆盖默认的 `/usr/bin/python` 文件。 5. **验证安装结果** 安装完成后可以通过命令确认新版本是否可用。 ```bash /usr/local/python3.14/bin/python3.14 --version ``` 6. **创建软链接方便调用** 如果经常需要用到此版本,则可为其建立快捷方式。 ```bash sudo ln -s /usr/local/python3.14/bin/python3.14 /usr/bin/python3.14 python3.14 --version ``` #### 注意事项 - 在某些场景下如果需要同时兼容多个不同版本的 Python,请谨慎修改全局解释器位置。建议利用虚拟环境管理各个项目所需的特定版本。 - 若计划集成第三方库比如 Caffe,在完成基础构建之后还需要额外处理其依赖关系以及 PATH 设置等问题[^2]。 - 对于 Windows 平台移植过来的应用程序来说,有时会因为动态链接库缺失而导致导入失败的情况发生。此时应该仔细检查是否有遗漏必要的 runtime 组件或者调整 LD_LIBRARY_PATH 环境变量来解决问题[^3]。 ```python # 测试新建环境中能否正常加载所需模块 import numpy as np np.__version__ ```
评论 128
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值