题目描述
n个人排成一圈,按顺时针方向依次编号1,2,3…n。从编号为1的人开始顺时针"一二三...."报数,报到m的人退出圈子。这样不断循环下去,圈子里的人将不断减少。最终一定会剩下一个人。试问最后剩下的人的编号。
本题的数据规模更具有挑战性,尝试更通用且高效的算法。
输入
超过1000组数据。
每组数据一行,每行两个正整数,代表人数n (1 <= n < 231)和m(1<=m<=100)。
输出
每组输入数据输出一行, 仅包含一个整数,代表最后剩下的人的编号。
样例输入
7 2
2 2
样例输出
7
1
这里就不进行模拟了,时间复杂度为O(mn),用数组与链表都可以,但麻烦。
第一种递归
原理
令f[n]表示当有n个候选人时,最后当选者的编号。则:
f[1] = 0
f[n] = (f[n - 1] + K) mod n
方法证明
上述公式可以用数据归纳法简单证明其正确性:
f[1] = 0
当只有一个候选人的时候,显然结果应该是0
f[n] = (f[n - 1] + K) mod n
f[n - 1]
为第n - 1
次数到的id序列,则第n
次就是再往下数k
个,最后进行取模运算即可得到结果序列这种算法的时间复杂度为O(N),空间复杂度为O(1),效率有所提高
#include <iostream> using namespace std; int main() { int num, n, k; int ret = 0; while(cin >> n >> k){ for(int i = 2; i <= n; ++i) { ret = (ret + k) % i;//ret记录每一次数到的序列号 } cout << ret +1<< endl;//输出最终序列结果 } return 0; }
第二种递归
原理
- 在每一轮报数过程中,都有
N/K
个人退出了队伍,比如N = 10, K = 3
,第一轮有N / K = 3
三个人退出;- 上述第一种方法每次递归的步长为
1
,这里我们利用上述关系,建立一个步长为N / K
的递归过程;- 需要注意的是,当
N
减少到N = K
的时候就需要使用第一种递归进行计算;N > K
时的递归公式为:ret < N mod K: ret = ret - (N mod K) + N
ret >= N mod K: ret = ret - (N mod K) + (ret - N mod K) / (K - 1)
#include <iostream> #include <cstdio> using namespace std; typedef long long ll; ll josephus(ll n, ll k) { ll ret; if(n == 1) return 0; //n < k的时候使用第一种递归算法 if(n < k) { ll ret = 0; for(ll i = 2; i <= n; ++i) ret = (ret + k) % i; return ret; } //执行递归过程 ret = josephus(n-n/k,k); if(ret < n % k) { ret = ret - n % k + n; } else { ret = ret - n % k + (ret - n % k ) / (k - 1); } return ret; } int main() { ll n, m; while(cin>>n>>m){ if(m==1) cout<<n<<endl; //特殊处理 else cout << josephus(n, m)+1 << endl; } return 0; }