在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
题意:中文题没有压力
思路:极其类似N皇后,只不过需要在棋盘区域摆放棋子
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <set>
#include <string>
#include <cstring>
#define N 1005
using namespace std;
typedef long long ll;
char a[10][10];
int vis[10];
int n,k;
int total,m;
void DFS(int cur)
{
if(k==m){
total++;
return ;
}
if(cur>n)
return ;
for(int i=0;i<n;i++){
if(vis[i]==0&&a[cur][i]=='#'){
vis[i]=1;
m++;
DFS(cur+1);
vis[i]=0;
m--;
}
}
DFS(cur+1);
}
int main()
{
while(scanf("%d%d",&n,&k)&&n!=-1&&k!=-1){
total=0;
m=0;
for(int i=0;i<n;i++)
scanf("%s",&a[i]);
memset(vis,0,sizeof(vis));
DFS(0);
printf("%d\n",total);
}
}