目录
P3613 【深基15.例2】寄包柜
题目描述
超市里有 n(1≤n≤10^5) 个寄包柜。每个寄包柜格子数量不一,第 ii 个寄包柜有ai(1≤ai≤10^5) 个格子,不过我们并不知道各个 ai 的值。对于每个寄包柜,格子编号从 1 开始,一直到 ai。现在有 q(1≤q≤10^5) 次操作:
1 i j k
:在第 i 个柜子的第 j 个格子存入物品 k(0≤k≤10^9)。当 k=0 时说明清空该格子。2 i j
:查询第 i 个柜子的第 j 个格子中的物品是什么,保证查询的柜子有存过东西。
已知超市里共计不会超过 10^7 个寄包格子,ai 是确定然而未知的,但是保证一定不小于该柜子存物品请求的格子编号的最大值。当然也有可能某些寄包柜中一个格子都没有。
输入格式
第一行 2 个整数 n 和 q,寄包柜个数和询问次数。
接下来 q 个整数,表示一次操作。
输出格式
对于查询操作时,输出答案,以换行隔开。
输入样例
5 4
1 3 10000 118014
1 1 1 1
2 3 10000
2 1 1
输出样例
118014
1
解答代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
vector<map<int,int> >b;
b.resize(100005);
long long i,j,k;
int n,q,num;
scanf("%d%d",&n,&q);
for(int m=1;m<=q;m++)
{
scanf("%d%lld%lld",&num,&i,&j);
if(num==1)
{
scanf("%lld",&k);
b[i][j]=k;
}
else
{
printf("%d\n",b[i][j]);
}
}
return 0;
}
思路
分条件运行,第一位为1,则存入二维数组中,第一位为2,则输出该位储存的内容。为了运行不超时和内存不过大,用上vector。
P1241 括号序列
题目描述
定义如下规则:
- 空串是「平衡括号序列」
- 若字符串 S 是「平衡括号序列」,那么[S] 和(S) 也都是「平衡括号序列」
- 若字符串 A 和 B 都是「平衡括号序列」,那么 AB(两字符串拼接起来)也是「平衡括号序列」。
例如,下面的字符串都是平衡括号序列:
()
,[]
,(())
,([])
,()[]
,()[()]
而以下几个则不是:
(
,[
,]
,)(
,())
,([()
现在,给定一个仅由 (
,)
,[
,]
构成的字符串 ss,请你按照如下的方式给字符串中每个字符配对:
- 从左到右扫描整个字符串。
- 对于当前的字符,如果它是一个右括号,考察它与它左侧离它最近的未匹配的的左括号。如果该括号与之对应(即小括号匹配小括号,中括号匹配中括号),则将二者配对。如果左侧未匹配的左括号不存在或与之不对应,则其配对失败。
配对结束后,对于 ss 中全部未配对的括号,请你在其旁边添加一个字符,使得该括号和新加的括号匹配。
输入格式
输入只有一行一个字符串,表示 ss。
输出格式
输出一行一个字符串表示你的答案。
输入样例
输入#1
([()
输出#1
()[]()
输入#2
([)
输出#2
()[]()
说明/提示
数据规模与约定
对于全部的测试点,保证 ss 的长度不超过 100,且只含 (
,)
,[
,]
四个字符。
解答代码
#include<bits/stdc++.h>
#include <string>
using namespace std;
int main()
{
int top=0,stai[101];
char sta[101],b[101];
string a;
cin >> a;
int n=a.length();
for(int i=0;i<n;i++)
{
if(a[i] == '(' || a[i] == '[')
{
top++;
sta[top]=a[i];
stai[top]=i;
if(a[i] == '(') b[i]=')';
else if(a[i]=='[')b[i]=']';
}
if(a[i] == ')')
{
if(top>0 && sta[top] == '(')
{
b[stai[top]]=' '; top--;
}
else b[i]='(';
}
if(a[i] == ']')
{
if(top>0 && sta[top] == '[')
{
b[stai[top]]=' '; top--;
}
else b[i]='[';
}
}
for(int i=0;i<n;i++)
{
if(b[i] == '(' || b[i] == '[') printf("%c%c",b[i],a[i]);
else if(b[i] == ')' || b[i] == ']') printf("%c%c",a[i],b[i]);
else printf("%c",a[i]);
}
return 0;
}
思路
运用栈。每遇到一个符号a[i],就将对应的另一半存入c[i] ,同时将其存入栈,以及用stai[]储存所在栈中位置的下标。输出时两个符号一起输出。
P1449 后缀表达式
题目描述
所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右新进行(不用考虑运算符的优先级)。
如:3*(5-2)+7 对应的后缀表达式为:3.5.2.-*7.+@。在该式中,@
为表达式的结束符号。.
为操作数的结束符号。
输入格式
输入一行一个字符串 s,表示后缀表达式。
输出格式
输出一个整数,表示表达式的值。
输入样例
3.5.2.-*7.+@
输出样例
16
说明/提示
数据保证,1≤∣s∣≤50,答案和计算过程中的每一个值的绝对值不超过 10^9。
解答代码
#include <iostream>
using namespace std;
int main()
{
long long sta[1005]={0},s;
int top=0;
char c;
c=getchar();
while(c!='@')
{
if(c>='0'&&c<='9')
{
sta[top+1]=sta[top+1]*10+(c-'0');
}
else if(c=='.')
{
top++;
}
else if(c=='+')
{
s=sta[top]+sta[top-1];
top--;
sta[top]=s;
sta[top+1]=0;
}
else if(c=='-')
{
s=sta[top-1]-sta[top];
top--;
sta[top]=s;
sta[top+1]=0;
}
else if(c=='*')
{
s=sta[top-1]*sta[top];
top--;
sta[top]=s;
sta[top+1]=0;
}
else if(c=='/')
{
s=sta[top-1]/sta[top];
top--;
sta[top]=s;
sta[top+1]=0;
}
else if(c=='%')
{
s=sta[top-1]%sta[top];
top--;
sta[top]=s;
sta[top+1]=0;
}
c=getchar();
}
cout<<sta[top];
return 0;
}
思路
运用栈的思想。遇到.储存数字,遇到运算符号,则从栈中取出最上面两个数据,计算并存入t倒数第二位,并且top--。
P1160 队列安排
题目描述
一个学校里老师要将班上 N 个同学排成一列,同学被编号为 1∼N,他采取如下的方法:
-
先将 1 号同学安排进队列,这时队列中只有他一个人;
-
2−N 号同学依次入列,编号为 i 的同学入列方式为:老师指定编号为 i 的同学站在编号为 1∼(i−1) 中某位同学(即之前已经入列的同学)的左边或右边;
-
从队列中去掉 M(M<N) 个同学,其他同学位置顺序不变。
在所有同学按照上述方法队列排列完毕后,老师想知道从左到右所有同学的编号。
输入格式
第 1 行为一个正整数 N,表示了有 N 个同学。
第 2∼N行,第 i 行包含两个整数 k,p,其中 k 为小于 i 的正整数,p 为 0 或者 1。若 p 为0,则表示将 i 号同学插入到 k 号同学的左边,p 为 1 则表示插入到右边。
第 N+1 行为一个正整数 M,表示去掉的同学数目。
接下来 M 行,每行一个正整数 x,表示将 x 号同学从队列中移去,如果 x 号同学已经不在队列中则忽略这一条指令。
输出格式
1 行,包含最多 N 个空格隔开的正整数,表示了队列从左到右所有同学的编号,行末换行且无空格。
输入样例
4
1 0
2 1
1 0
2
3
3
输出样例
2 4 1
说明/提示
样例解释:
将同学 22 插入至同学 11 左边,此时队列为:
2 1
将同学 33 插入至同学 22 右边,此时队列为:
2 3 1
将同学 44 插入至同学 11 左边,此时队列为:
2 3 4 1
将同学 33 从队列中移出,此时队列为:
2 4 1
同学 33 已经不在队列中,忽略最后一条指令
最终队列:
2 4 1
数据范围
对于 20\%20% 的数据,有 1≤N≤10;
对于 40\%40% 的数据,有 1≤N≤1000;
对于 100\%100% 的数据,有 1≤N,M≤100000。
解答代码
#include <iostream>
using namespace std;
struct stu
{
int left;
int right;
};
int main()
{
int n,k,p,m,s,c[1000001];
cin>>n;
stu a[1000001];
a[0].right=1;
a[0].left=n;
a[1].left=0;
a[1].right=0;
c[1]=1;
for(int i=2;i<=n;i++)
{
cin>>k>>p;
if(p==0)
{
a[i].right=k;
a[i].left=a[k].left;
a[a[k].left].right=i;
a[k].left=i;
}
else
{
a[i].left=k;
a[i].right=a[k].right;
a[a[k].right].left=i;
a[k].right=i;
}
c[i]=1;
}
cin>>m;
for(int i=1;i<=m;i++)
{
cin>>s;
if(c[s]==1)
{
a[a[s].left].right=a[s].right;
a[a[s].right].left=a[s].left;
c[s]=0;
}
}
int j=0;
while(a[j].right!=0)
{
cout<<a[j].right;
if(a[j].right!=0) cout<<' ';
j=a[j].right;
}
return 0;
}
思路
运用双向链表,.right 表示右侧同学编号,.left 表示左侧同学编号。以a[0]为起点和终点。c数组中,1表示在队伍中,0表示不在队伍中。