I - Moon Game FZU - 2148

这个题的意思是给你n个点, 你判断下这n个点能组成几个凸面四边形。这个题的核心就是凸面四边形的组成条件。如果三个点,任意三个点组成三角形,第四个点在三角形的外部,那么就是凸面四边形。
如果一个点P在三角形的内部,那么Sabc = Sabp + Sbcp + Sacp;
这题最好不要用海伦公式来求面积,因为会出现精度问题,不容易判断相等,所以给出一种新的方法叉乘。

#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

struct node
{
    int x;
    int y;
}p[35];

int square(node a, node b, node c)
{
    return abs((b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y));
}
//利用叉乘的方式,这里是求得三角形面积的二倍;

bool judge(node a, node b, node c, node d)
{
    int abc = square(a, b, c);
    int abd = square(d, a, b);
    int acd = square(d, a, c);
    int bcd = square(d, b, c);

    if(abd + acd + bcd == abc)
        return false;
    return true;
}

int main()
{
    int t, n, i, cas = 1;
    scanf("%d", &t);
    while(t--)
    {
        int cnt = 0;
        scanf("%d", &n);
        for(i = 0; i < n; i++)
        scanf("%d %d", &p[i].x, &p[i].y);

        for(i = 0; i < n; i++)
        {
            for(int j = i + 1; j < n; j++)
            {
                for(int k = j + 1; k < n; k++)
                {
                    for(int l = k + 1; l < n; l++)
                    {
                        if(judge(p[i], p[j], p[k], p[l]) && judge(p[i], p[j], p[l], p[k]) && judge(p[i], p[l], p[k], p[j]) && judge(p[l], p[j], p[k], p[i]))
//这里要判断四次,注意顺序不是随便交换的。
                        cnt++;
                    }
                }
            }
        }

        printf("Case %d: %d\n", cas++, cnt);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值