这个题的意思是给你n个点, 你判断下这n个点能组成几个凸面四边形。这个题的核心就是凸面四边形的组成条件。如果三个点,任意三个点组成三角形,第四个点在三角形的外部,那么就是凸面四边形。
如果一个点P在三角形的内部,那么Sabc = Sabp + Sbcp + Sacp;
这题最好不要用海伦公式来求面积,因为会出现精度问题,不容易判断相等,所以给出一种新的方法叉乘。
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
struct node
{
int x;
int y;
}p[35];
int square(node a, node b, node c)
{
return abs((b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y));
}
//利用叉乘的方式,这里是求得三角形面积的二倍;
bool judge(node a, node b, node c, node d)
{
int abc = square(a, b, c);
int abd = square(d, a, b);
int acd = square(d, a, c);
int bcd = square(d, b, c);
if(abd + acd + bcd == abc)
return false;
return true;
}
int main()
{
int t, n, i, cas = 1;
scanf("%d", &t);
while(t--)
{
int cnt = 0;
scanf("%d", &n);
for(i = 0; i < n; i++)
scanf("%d %d", &p[i].x, &p[i].y);
for(i = 0; i < n; i++)
{
for(int j = i + 1; j < n; j++)
{
for(int k = j + 1; k < n; k++)
{
for(int l = k + 1; l < n; l++)
{
if(judge(p[i], p[j], p[k], p[l]) && judge(p[i], p[j], p[l], p[k]) && judge(p[i], p[l], p[k], p[j]) && judge(p[l], p[j], p[k], p[i]))
//这里要判断四次,注意顺序不是随便交换的。
cnt++;
}
}
}
}
printf("Case %d: %d\n", cas++, cnt);
}
return 0;
}