HDU 3709 Balanced Number

HDU 3709 Balanced Number(数位DP)

题目链接:https://cn.vjudge.net/contest/163023#problem/F
题目大意:对于某个数字,以其中一位为支点,分成左右两边。如果左右两部分的 sigma(d[i] * | i - fixloc |)相等,那它就是Balaced Number。比如:4139以3为分界点4*2+1*1=9 and 9*1=9。所以它是。
题目分析:
首先要分析出,对于某个非 0 的 number,最多可能有一个 pivot 的位置。

证明:如果有两个这样的位置,将左边位置移动到右边时,左边的 sigma 一定增大,右边的 sigma 最多保证不减,不可能增大,故不可能再次相等。

于是可以枚举这样的位置,然后分类统计求和。

由于 0 对于每个位置都会被统计到,最后要再减去重复的。

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
int data[20];
ll dp[20][20][2000];

ll dfs(int pos, int o, int sum, bool limit)
{
    if(pos == -1) return sum == 0;
    if(!limit && dp[pos][o][sum] != -1) return dp[pos][o][sum];

    int up = limit ? data[pos] : 9;
    ll ans = 0;

    for(int i = 0; i <= up; i++)
    {
        int v = sum + i * (pos - o);
        ans += dfs(pos - 1, o, v, i == data[pos] && limit);
    }

    if(!limit) dp[pos][o][sum] = ans;
    return ans;
}

ll solve(ll n)
{
    int pos = 0;
    while(n)
    {
        data[pos++] = n % 10;
        n /= 10;
    }

    ll ans = 0;
    for(int i = 0; i < pos; i++)
     ans += dfs(pos - 1, i, 0, true);

     //减去00000. 0000
     return ans - pos + 1;
}

int main()
{
    int t;
    ll a, b;
    scanf("%d", &t);
    memset(dp, -1, sizeof(dp));
    while(t--)
    {
        scanf("%lld %lld", &a, &b);
        printf("%lld\n", solve(b) - solve(a - 1));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值