深度学习
文章平均质量分 54
Leri_X
这个作者很懒,什么都没留下…
展开
-
BertTokenizer 使用方法
BertTokenizer 使用方法,BertTokenizer 函数详解,tokenizer使用方法原创 2022-08-25 13:33:00 · 11645 阅读 · 3 评论 -
使用numpy实现全连接神经网络
目录1. numpy实现全连接层2. numpy实现MSE损失函数3. numpy实现梯度更新优化器momentum优化器SGD优化器4. numpy实现sigmoid激活函数5. 简单模型的定义6. 数据集测试7. train函数实现1. numpy实现全连接层class numpy_fc(object): def __init__(self, in_channel, out_channel, optim, name="fc"): .原创 2021-01-11 14:04:03 · 2263 阅读 · 0 评论 -
必能读懂的 交叉熵详解,pytorch中交叉熵的使用
目录1. 交叉熵详解1.1信息量1.2 熵1.3 相对熵(KL散度)1.4交叉熵1.5 小结2. 交叉熵的应用(pytorch中)2.1交叉熵在分类任务中的计算过程2.2 log_softmax()函数2.3nll_loss()函数2.4cross_entropy()函数2.5 函数的其他调用方式1. 交叉熵详解1.1...原创 2020-03-12 00:38:56 · 2511 阅读 · 1 评论 -
softmax 简单讲解
1.softmax 的位置softmax(软最大输出函数),可以将输入序列映射到 0-1 之间,且映射后的序列和为 1,这样就可以理解为,将输入序列转化为分别对应属于某些分类的概率,因此常常用来作为多分类任务中的激活函数,同时使用交叉熵作为损失函数。2.softmax函数及导数softmax 函数softmax 求导时分两种情况:当 i = j 时:当 i ≠ ...原创 2020-03-10 17:41:21 · 694 阅读 · 0 评论 -
Batch normalization理解
学习时候发现了有的网络结构中将BN作为单独的一层进行设计,因此学习了一下BN。1.Batch normalization理解BN可以作为激活层之前一层,将输入数据进行标准化,BN计算公式如下:其中,E[x]为均值,sqrt(var)为标准差,可知BN层的输出其实是将输入的数据标准化成为均值为0方差为1的正态分布。这样做的原因呢?这里我们假设使用si...原创 2020-02-29 15:15:18 · 382 阅读 · 0 评论