莫比乌斯反演

定理:F(n)和f(n)是定义在非负整数集合上的两个函数,并且满足条件 F(n)=d|nf(d) ,那么我们得到结论 f(n)=d|nμ(d)F(n/d)
在上面的公式中有一个函数 μ(d) ,它的定义如下:
(1)若d=1,那么 μ(d)=1 .
(2)若d= p1p2pk ,均为互异素数,那么 μ(d)=(1)k .
(3)其它情况下 μ(d)=0 .
对于函数 μ(d) ,它有如下的常见性质:

  1. 对任意正整数n有
    这里写图片描述
  2. 对任意正整数n有
    这里写图片描述

其实它还有另一种描述,本题也是用到这种。那就是:
这里写图片描述

//求1-n的函数值
bool vis[MAX+10];
int mu[MAX+10],prime[MAX+10],cnt;
void mobi(int n){
    memset(vis,false,sizeof(vis));
    mu[1]=1;
    cnt=0;
    for(int i=2;i<=n;++i){
        if(!vis[i]){
            prime[cnt++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<cnt&&i*prime[j]<=n;++j){
            vis[i*prime[j]]=1;
            if(i%prime[j]) mu[i*prime[j]]=-mu[i];
            else{
                mu[i*prime[j]]=0;
                break;
            }
        }
    }
}
//另一版本
int prime[maxn];
bool check[maxn];
void Mobius(){
    memset(check,false,sizeof(check));
    prime[0] = 0;
    FOR(i,2,maxn){
        if(!check[i]){
            prime[++prime[0]] = i;
        }
        FOR(j,1,prime[0]+1){
            if(i*prime[j] >= maxn)  break;
            check[i*prime[j]] = true;
            if(i%prime[j] == 0) break;
        }
    }
}
//求某个数对应的函数值。
int mobi(int n){
    int m=1;
    for(int i=2;i*i<=n;++i)
        if(n%i==0){
            m*=-1;
            int k=0;
            do{
                k++;
                if(k>1){
                    m=0;
                    break;
                }
                n/=i;
            }while(n%i==0);
        }
    if(n>1) m*=-1;
    return m;
}
相关题目:
  1. triple
  2. count_prime
  3. 51nod1240
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值