tensorflow中定义的tf.Variable时,可以通过trainable属性控制这个变量是否可以被优化器更新。但是,tf.Variable的trainable属性是只读的,我们无法动态更改这个只读属性。在定义tf.Variable时,如果指定trainable=True,那么会把这个Variable添加到“可被训练的变量”集合中。
把trainable指定为布尔变量是不管用的,trainable只在定义变量的那一瞬间有用。
# trainable只能是bool值,不能是张量
trainable = tf.Variable(False, dtype=tf.bool)
loss = tf.Variable(3.0, dtype=tf.float32, trainable=trainable)
train_op = tf.train.AdamOptimizer(0.01).minimize(loss)
with tf.Session()as sess:
sess.run(tf.global_variables_initializer())
for i in range(100):
_, lo = sess.run([train_op, loss], feed_dict={
trainable: i % 10 < 5
})
print('epoch', i, 'loss', lo)
在定义Variable变量的那一瞬间,如果trainable=true,这个变量就会被添加到可被训练的变量集合中去。当定义optimizer的minimize张量时,minimize张量就会读取可被训练的变量集合并构建张量。此后,即便可被训练的变量集合发生改变,minimize张量也不会再去管哪些变量不能被训练了。
"""
如果optimizer的全部变量都是不可训练的,tensorflow会抛出异常
所以在这里使用两个变量,两个变量轮流变得可调节
:return:
"""
x = tf.Variable(3.0, dtype=tf.float32)
y = tf.Variable(13.0, dtype=tf.float32)
train_op = tf.train.AdamOptimizer(0.01).minimize(tf.abs(y - x))
with tf.Session()as sess:
sess.run(tf.global_variables_initializer())
print("trainable_variables is a function")
print(tf.trainable_variables, type(tf.trainable_variables()))
print(tf.trainable_variables())
print("tf.GraphKeys has several string key")
print(tf.GraphKeys.TRAINABLE_VARIABLES, type(tf.GraphKeys.TRAINABLE_VARIABLES))
print("tf.get_collection can get something by tf.GraphKeys")
col = tf.get_collection_ref(tf.GraphKeys.TRAINABLE_VARIABLES)
print(col, type(col))
print("try remove x from trainable variables")
del col[col.index(x)] # 此处虽然可被训练的变量集合变化了,但是train_op已经定义完了
print(tf.trainable_variables())
print('=======')
for i in range(100):
_, xx, yy = sess.run([train_op, x, y])
print('epoch', i, xx, yy) # 此处x和y都会变化
tf.GraphKeys
tf.GraphKeys中包含了所有默认集合的名称,可以通过查看__dict__发现具体集合。
tf.GraphKeys.GLOBAL_VARIABLES:global_variables被收集在名为tf.GraphKeys.GLOBAL_VARIABLES的colletion中,包含了模型中的通用参数
tf.GraphKeys.TRAINABLE_VARIABLES:tf.Optimizer默认只优化tf.GraphKeys.TRAINABLE_VARIABLES中的变量。
- tf.global_variables() GLOBAL_VARIABLES
存储和读取checkpoints时,使用其中所有变量
跨设备全局变量集合 - tf.trainable_variables() TRAINABLE_VARIABLES
训练时,更新其中所有变量
存储需要训练的模型参数的变量集合 - tf.moving_average_variables() MOVING_AVERAGE_VARIABLES
ExponentialMovingAverage对象会生成此类变量
实用指数移动平均的变量集合 - tf.local_variables() LOCAL_VARIABLES
在global_variables()之外,需要用tf.init_local_variables()初始化
进程内本地变量集合 - tf.model_variables() MODEL_VARIABLES
Key to collect model variables defined by layers.
进程内存储的模型参数的变量集合 - QUEUE_RUNNERS 并非存储variables,存储处理输入的QueueRunner
- SUMMARIES 并非存储variables,存储日志生成相关张量
除了以上的函数外(上表中最后两个集合并非变量集合,为了方便一并放在这里),还可以使用tf.get_collection(集合名)获取集合中的变量,不过这个函数更多与tf.get_collection(集合名)搭配使用,操作自建集合。
Summary被收集在名为tf.GraphKeys.UMMARIES的colletion中,Summary是对网络中Tensor取值进行监测的一种Operation,这些操作在图中是“外围”操作,不影响数据流本身,调用tf.scalar_summary系列函数时,就会向默认的collection中添加一个Operation。
我们也可以自定义变量集合、操作集合,这在正则化参数时非常有用。
x1 = tf.constant(1.0)
l1 = tf.nn.l2_loss(x1)
x2 = tf.constant([2.5, -0.3])
l2 = tf.nn.l2_loss(x2)
tf.add_to_collection("losses", l1)
tf.add_to_collection("losses", l2)
losses = tf.get_collection('losses')
loss_total = tf.add_n(losses)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
losses_val = sess.run(losses)
loss_total_val = sess.run(loss_total)
我说
tensorflow臃肿庞杂,设计者的设计水平远远比不上keras。
tensorflow臃肿庞杂,做了许多外围操作。比如为变量起名字,把变量添加到集合中,使用summary来监控训练中产生的数据。这些操作都不是核心操作,分清核心操作和扩展操作非常重要。
- 基本操作:如加减乘除、矩阵乘法等运算
- python语言操作:基本上是一些外围操作如collection,summary,dataset等。tf.gfile中定义了一堆文件操作,比python自带的文件操作要高效易用。
- 函数级封装:把经常使用的基本操作定义成一个函数,如softmax、wx_b、cross_entropy等。
- 层级封装:定义一些常见层,如全连接层、卷积层等。
- 模型封装:keras中有Model,Tensorflow不好意思直接拿来用,起了个名叫“Estimator”。
optimizer其实也是一种封装,optimizer其实就是对变量执行assign操作。除了使用反向传播,我们也可以自己定义基于遗传算法的optimizer。
拦截optimizer的梯度更新过程实现动态trainable
optimizer计算梯度的过程是应用梯度的过程是两个步骤。计算梯度张量返回一个grad_and_vars列表,应用梯度需要grad_and_vars列表作为参数。
我们可以建立(loss,exemp)到minize张量的映射。
# 拦截梯度更新过程
class MyOptimizer:
def __init__(self, optimizer: tf.train.Optimizer):
self.optimizer = optimizer
self.operations = dict()
def minimize(self, loss, exemp):
"""
注意:因为minimize操作是在sess运行时运行的,如果总是创建新操作,GPU内存会溢出
"""
k = ' '.join(sorted([i.name for i in exemp])) + loss.name
if k not in self.operations:
a = [i for i in tf.trainable_variables() if i not in exemp]
grad_vars = self.optimizer.compute_gradients(loss, a)
op = self.optimizer.apply_gradients(grad_vars)
self.operations[k] = op
return self.operations[k]
x = tf.Variable(3.0, dtype=tf.float32)
y = tf.Variable(31.0, dtype=tf.float32)
loss = tf.abs(x - y)
"""
为了初始化optimizer中的一些信息,所以需要来一个加的operation形成一个张量
"""
optimizer = MyOptimizer(tf.train.AdamOptimizer(0.01))
train_op = optimizer.minimize(loss, [])
with tf.Session()as sess:
sess.run((tf.global_variables_initializer(), tf.local_variables_initializer()))
for i in range(100):
exemp = [x if i % 10 < 5 else y]
_, xx, yy, lo = sess.run([optimizer.minimize(loss, exemp=exemp), x, y, loss])
print('epoch', i, 'x', xx, 'y', yy, 'loss', lo)
这种方法的缺点在于使用loss和exemp作为key,如果key太多,定义的张量就会变多,这样会产生很多变量。
尝试优化一下,使用loss作为key。
def __init__(self, optimizer: tf.train.Optimizer):
self.optimizer = optimizer
self.operations = dict()
def minimize(self, loss, exemp):
"""
注意:因为minimize操作是在sess运行时运行的,如果总是创建新操作,GPU内存会溢出
"""
if loss.name not in self.operations:
grad_vars = self.optimizer.compute_gradients(loss)
self.operations[loss.name] = grad_vars
grad_vars = self.operations[loss.name]
exemp = set(exemp)
grad_vars = list(filter(lambda x: x[1] not in exemp, grad_vars))
op = self.optimizer.apply_gradients(grad_vars)
return op
x = tf.Variable(3.0, dtype=tf.float32)
y = tf.Variable(31.0, dtype=tf.float32)
loss = tf.abs(x - y)
"""
为了初始化optimizer中的一些信息,所以需要来一个加的operation形成一个张量
"""
optimizer = MyOptimizer(tf.train.AdamOptimizer(0.01))
train_op = optimizer.minimize(loss, [])
with tf.Session()as sess:
sess.run((tf.global_variables_initializer(), tf.local_variables_initializer()))
for i in range(100):
exemp = [x if i % 10 < 5 else y]
_, xx, yy, lo = sess.run([optimizer.minimize(loss, exemp=exemp), x, y, loss])
print('epoch', i, 'x', xx, 'y', yy, 'loss', lo)
这种方法其实更差劲,因为apply_gradients依旧会创建许多张量(许多tf.assign_sub张量),而第一种方法反倒没有那么多的张量。
梯度更新的过程其实就是一堆assign操作。
# 拦截梯度更新过程
class MyOptimizer:
def __init__(self, optimizer: tf.train.Optimizer):
self.optimizer = optimizer
self.operations = dict()
def minimize(self, loss, exemp):
"""
注意:因为minimize操作是在sess运行时运行的,如果总是创建新操作,GPU内存会溢出
"""
if loss.name not in self.operations:
grad_vars = self.optimizer.compute_gradients(loss)
op = [(variable, tf.assign_sub(variable, self.optimizer._lr * grad)) for grad, variable in grad_vars]
self.operations[loss.name] = op
grad_vars = self.operations[loss.name]
op = [x[1] for x in grad_vars if x[0] not in exemp]
return op
x = tf.Variable(3.0, dtype=tf.float32)
y = tf.Variable(31.0, dtype=tf.float32)
loss = tf.abs(x - y)
"""
为了初始化optimizer中的一些信息,所以需要来一个加的operation形成一个张量
"""
optimizer = MyOptimizer(tf.train.AdamOptimizer(0.01))
train_op = optimizer.minimize(loss, [])
with tf.Session()as sess:
sess.run((tf.global_variables_initializer(), tf.local_variables_initializer()))
for i in range(100):
exemp = [x if i % 10 < 5 else y]
_, xx, yy, lo = sess.run([optimizer.minimize(loss, exemp=exemp), x, y, loss])
print('epoch', i, 'x', xx, 'y', yy, 'loss', lo)