自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(53)
  • 资源 (1)
  • 问答 (2)
  • 收藏
  • 关注

原创 python绘图matplotlib 图例legend形状和位置设置

legend调整

2022-12-06 12:53:09 2677 1

原创 python画图(标记、marker、设置标记大小、marker符号大全)

python画图标记marker大全

2022-12-06 11:57:17 4248

原创 windows无权限如何安装TensorFlow-GPU?

window安装tf-gpu

2022-09-28 17:06:49 537

原创 python matplptlib画图显示下标

ax.set_ylabel("The value of $u_a$")plt.legend(labels=['$u_{a1}$','$u_{a2}$','$u_{a3}$','$u_{a4}$'], loc='best'--------------------------------------------------------如果涉及到多个字符,那么只需把期望的下标部分加上{}。--------------------------------------------------------

2022-05-13 11:19:39 918

原创 sns.violinplot 小提琴图控制XY坐标轴范围

我想在一月开始剧情,即使数据收集在3月开始2021,为了显示每年的绘图顶部彼此,并能够在视觉上比较相同月份的不同年份。我尝试了set_xlim的以下用法,但没有成功。只需将order参数传递给saeborn.violinplot:fig, ax = plt.subplots(figsize=(24,10))fontsize=18plt.rc('xtick', labelsize=fontsize)plt.rc('ytick', labelsize=fontsize)plt.rcParams

2022-05-13 10:55:40 3226 1

转载 Conda网络报错Collecting package metadata (current_repodata.json): failed

使用python部署独立环境小伙伴因为网速慢没少吃苦。下面的异常你一定见过,或者似曾相识CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/linux-64/qt-5.12.5-hd8c4c69_1.tar.bz2>Elapsed: -An HTTP error occurred when trying to

2022-04-24 16:59:48 1839 2

原创 AttributeError: ‘tensorflow.python.framework.ops.EagerTensor‘ object has no attribute ‘_in_graph_mod

The reason for the bug is that the tf.keras optimizers apply gradients to variable objects (of type tf.Variable), while you are trying to apply gradients to tensors (of type tf.Tensor). Tensor objects are not mutable in TensorFlow, thus the optimizer canno

2022-02-08 19:00:33 2610

转载 Tensorflow 2.x自定义网络层的方法及其注意事项

转载https://zhuanlan.zhihu.com/p/86886620在tensorflow 2.x中自定义网络层最好的方法就是继承tf.keras.layers.Layer类,并且根据实际情况重写如下几个类方法:__init__:初始化类,你可以在此配置一些网络层需要的参数,并且也可以在此实例化tf.keras提供的一些基础算子比如DepthwiseConv2D,方便在call方法中应用;你可以在其中执行所有与输入无关的初始化。build:可以获得输入张量的形状,并可以进行其余的初始化。该方

2022-01-03 13:09:50 856 1

原创 TensorFlow2 关于设置变量是否trainable的难懂点

复杂模型的建立,可以是Model类型里面嵌套Model类型的Layer type,比如:这就会导致层次结构很深。当想要设置深层的权重是否可训练的时候,不要以为把最内层的layer.trainable=True即可了,这还是不够的,要把这一个layer从属的外层layer或者外层model(layer)也设置为 layer.trainable=True,因为TensorFlow2 的层次结构的trainable状态是独立的,外层的状态不会因为你对内层的状态改变而自动调整,要手动从外到内逐层设置,才是正确的

2022-01-03 10:33:58 1159

原创 tensorflow2 model.fit()高级使用方法详解

首先是官方文档: def fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, clas

2022-01-02 22:29:46 2111 1

原创 在ubuntu系统的超算部署Anaconda

1.在ubutun终端下载安装包:wget http://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh注意,是http而不是https;远程调用下载文件直接用wget就可以,一般文件路径类型是http。如果有遇到是https就会下载出错。否则,Linux下载文件时报错 To connect to ohse.de insecurely, use ‘–no-check-certificate’

2021-12-02 17:15:25 2089

原创 2021-10-01 tensorflow2 model.build()初始化模型后,其实约束还没执行

tensorflow2 的内在BUG是用Sequential创建模型时,model.build()初始化模型后,其实内在约束还没执行,比如kernel_constraint, 需要在第一次参数更新后(即调用 optimizer.gradients()更新权重),他才会执行。所以我使用了这个方法:让他更新一下...

2021-10-01 00:38:27 2602

原创 2021-08-18使用TensorFlow图层的“kernel_constraint”实现权重规范化

在[1],Salimans等人 . 提出了一种神经网络归一化技术,称为权重归一化,它对网络层的权重向量进行归一化,与例如批量归一化相反,后者规范化流经该层的实际数据批量 . 在某些情况下,权重归一化方法的计算开销较低,并且还可以在使用批量归一化不可行的情况下使用 .由优化器更新后应用于内核的可选投影函数(例如,用于实现层权重的范数约束或值约束) .我的问题是:是否可以使用上述TensorFlow图层来实现权重标准化 kernel_constraint ?假设 x 是一个形状为 (batch, heigh

2021-08-18 16:32:36 505

原创 kera-bert,keras, tensorflow版本对应

tensorflow2太好用了,相对来说tensorflow1就是个智障。而bert一点都不友好,几千行代码。kera_bert对bert进行了很好的封装,太棒了!tensorflow-gpu 2.2.0keras 2.4.3keras-bert 0.88.0

2021-08-04 20:24:53 2582 2

原创 layers.GlobalAveragePooling1D()的作用:接入Dense层之前,一定要把数据打平!

self.avgpool = layers.GlobalAveragePooling2D()可以用来打平!如果你的数据是3D的,要用 layers.GlobalAveragePooling1D()!效果:TensorShape([8, 200, 256]) ===> TensorShape([8, 256]) # self.final_bn = layers.BatchNormalization() # 接入Dense层之前,先打平!!! self.avgpool =

2021-08-04 20:22:36 1632

原创 tensorflow BERT创建模型 并训练的流程(使用estimator)

step1. 创建一个网络model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_s

2021-08-03 08:02:56 676

原创 Bert模型创建过程解读

def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_tr

2021-08-01 20:03:28 280

原创 看懂tf.app.run()

# 前面的代码省略了...def main(argv=None): mnist = input_data.read_data_sets("F:\mydata\TensorFlowData\MNIST_data", one_hot=True) train(mnist)if __name__ == '__main__': tf.app.run()大概意思是通过处理flag解析,然后执行main函数。说白了,有两种情况:如果你的代码中的入口函数不叫main(),而是一个其他

2021-08-01 18:21:11 149

原创 tensorboard已经安装却用不了?!

这个问题又尬了两个小时,解决方法是与Tensorflow版本相匹配!

2021-08-01 17:52:41 374

原创 Bert模型如何在之前训练基础上继续训练?

step1:改动这一行代码。ckpt-18000代表这个是第18000步训练后保存的FLAGS.init_checkpoint='./mysim_model2/model.ckpt-18000'step2:FLAGS.num_train_epochs=100总的训练次数要调的比之前更大。

2021-08-01 17:06:45 1312

转载 Bert模型参数及运行脚本编写

python run_classifier.py \ --task_name=mytask \ --do_train=true \ --do_eval=true \ --data_dir=$DATA_DIR/ \ --vocab_file=$BERT_BASE_DIR/vocab.txt \ --bert_config_file=$BERT_BASE_DIR/bert_config.json \ --init_checkpoint=$BERT_BASE_DIR/bert_mode

2021-08-01 13:07:43 640

原创 conda安装指定版本tensorflow

conda安装指定版本tensorflowconda install --channel https://conda.anaconda.org/anaconda tensorflow-gpu=1.13.1如果有的包超时了没安装上,直接重新执行一遍就行import tensorflow as tf tf.test.is_gpu_available()

2021-07-31 21:21:07 778

原创 spyder如何切换python虚拟环境?

在anaconda下创建了很多个python虚拟环境,现在我想使用 spyder 运行python程序,并且使用其中某一个虚拟环境,方法如下:首先要知道 Anaconda自带的spyder使用的是base环境,现在我想使用自己创建的 pytorch 虚拟环境。1)打开 Anaconda prompt ,切换至想要使用的虚拟环境,输入命令:activate pytorch2)在此虚拟环境下安装 spyder,输入命令:conda install spyder经过一段时间的安装,就会发现 所有

2021-07-31 20:07:51 6065 2

原创 tensorflow2.x如何输出当前的学习率?optimizer=adam(learningschedule)

假如optimizer=adam(learningschedule),这里learning_schedule是一个学习率衰减PolynomialDecay,那么我想在optimizer.apply_gradient前输出当前所使用的的学习率,该如何处理呢?print(optimizer.lr.numpy().item())

2021-07-14 08:39:31 2071 1

原创 python同时遍历多个列表

for i, j, z in zip(list1, list2, list3): print(i,j,z)

2021-07-07 15:35:31 510

原创 碾平列表(flatten list )

碾平列表(flatten list ),即当列表里面嵌套列表,如何将这些子列表给取出来,得到一个不包含子列表的列表,示例如下:用 lambda 实现一个匿名函数a = [1, 2, [3, 4], [[5, 6], [7, 8]]]flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]print(flatten(a))...

2021-06-27 15:19:10 541

原创 [pandas] dataframe 根据特定值筛选行的方法

data = df.read_csv('test.csv')# 筛选不包含0的行data = data[~ data['col'].isin([0.0])]# 同时也可以作为筛选包含0的行data = data[data['col'].isin([0.0])]# 如果需要匹配的话data = data[data['col'].str.contains(str)]

2021-05-31 21:28:30 1190

原创 软阈值函数S的快速计算方法

def S_Func(z): # z is np.narray type global lr, lamda, alpha r = lr*lamda*(1-alpha) print(np.sign(z),'\n') print(np.maximum(np.abs(z)-r, 0)) result = np.sign(z) * np.maximum(np.abs(z)-r, 0) return result

2021-05-20 14:03:37 363

原创 tensorflow2 给指定某一层权重赋值的绝骚操作

model.weights是不可更改的变量类型,自定义的给层手动赋值绝非易事。直接上代码:# 给第一隐藏层赋值为例optimizer2 = tf.keras.optimizers.SGD(lr=1.0)layer1 = model.layers[0]# theta1是网络原本带的权重 theta2 = [1,1,1,2,85,54,41] # 自己定义的权重optimizer2.apply_gradients(zip([theta1-theta2], layer1.trainable_varia

2021-05-20 12:49:05 1911

原创 tensorflow2.x实现Variable,Tensor转化为Numpy

Variable或者Tensor或许有numpy这个属性,直接tensor_name.numpy()或许就可以了。

2021-05-09 20:07:16 722 4

原创 TensorFlow 中求张量(向量)范数

在 TensorFlow 中,可以通过tf.norm(x, ord)求解张量的L1, L2, ∞等范数,其中参数ord指定为1,2 时计算L1, L2 范数,指定为np.inf 时计算∞ −范数

2021-05-09 18:32:05 926

原创 深度学习Tensorflow2.0之残差网络

resnet.pyimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers, Sequentialclass BasicBlock(layers.Layer): def __init__(self, filter_num, stride=1): super(BasicBlock, self).__init__() se.

2021-04-15 16:32:05 517

原创 tensorflow2.0生成dataset的几点坑

(x, y), (x_test, y_test) = keras.datasets.mnist.load_data()db_train = tf.data.Dataset.from_tensor_slices((x, y))上面x是numpy.array数组。tf.data.Dataset.from_tensor_slices还可以直接接收列表。有一种情况会报错,ValueError: Failed to convert a NumPy array to a Tensor (Unsupported

2021-03-11 23:08:57 363 1

转载 python 使用 with open() as 读写文件

读文件:要以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标示符:f = open('E:\python\python\test.txt', 'r')标示符’r’表示读,这样,我们就成功地打开了一个文件。如果文件不存在,open()函数就会抛出一个IOError的错误,并且给出错误码和详细的信息告诉你文件不存在:f=open('E:\python\python\notfound.txt', 'r')Traceback (most recent call la

2020-10-13 23:48:33 1251

原创 深度学习和小波去噪做资产定价

1.file_name: model.pyimport keras.layers as klfrom keras.models import Modelfrom keras import regularizersimport pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom bokeh.plotting import output_file, figure, showclass NeuralNetwork:

2020-10-09 21:19:45 361 3

原创 如何用python做没有截距项的多元回归?

ecm_clf = linear_model.LinearRegression(fit_intercept=False)ecm_clf.fit(X,Y)X和Y的shape都是(n_periods, m_features)

2020-10-02 23:08:15 6208

原创 np.reshape()和np.transpose()

如果你在数据处理过程中,不知道区分np.reshape()和np.transpose(),只是简单的知道都可以改变形状,那么将会犯一个智障的错误,就像reshape一样智障。且看他们的区别:a = np.array(np.arange(18).reshape(3,6))b = a.reshape(6,3)c = np.transpose(a)其余的就不多说了。...

2020-10-02 20:53:25 384

原创 傅立叶变换,拉普拉斯变换,小波变换

在这里插入图片描述

2020-09-30 18:35:04 273 1

原创 为什么将机器学习应用于资产定价?

以下分享Shihao Gu等的文献的一个章节,因为读到这里很感动,所以特地记下来。A number of aspects of empirical asset pricing make it a particularly attractive field for analysis withmachine learning methods.Two main research agendas have monopolized modern empirical asset pricing research

2020-09-30 10:09:50 1615

原创 老外Sunspot案例

或另一种复杂模型(预测sunspot用的)model = tf.keras.models.Sequential([ tf.keras.layers.Conv1D(filters=60, kernel_size=5, strides=1, padding="causal", activation="relu", input_shape=[None, 1]), tf.ke

2020-09-26 20:16:52 375 1

回调函数Callbacks - Keras中文文档.zip

全面的介绍keras的使用。Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 无缝CPU和GPU切换 Keras适用的Python版本是:Python 2.7-3.6

2020-08-19

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除