问题描述
2015年,全中国实现了户户通电。作为一名电力建设者,小明正在帮助一带一路上的国家通电。
这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电足够所有村庄使用。
现在,这 n 个村庄之间都没有电线相连,小明主要要做的是架设电线连接这些村庄,使得所有村庄都直接或间接的与发电站相通。
小明测量了所有村庄的位置(坐标)和高度,如果要连接两个村庄,小明需要花费两个村庄之间的坐标距离加上高度差的平方,形式化描述为坐标为 (x_1, y_1) 高度为 h_1 的村庄与坐标为 (x_2, y_2) 高度为 h_2 的村庄之间连接的费用为
sqrt((x_1-x_2)(x_1-x_2)+(y_1-y_2)(y_1-y_2))+(h_1-h_2)*(h_1-h_2)。
在上式中 sqrt 表示取括号内的平方根。请注意括号的位置,高度的计算方式与横纵坐标的计算方式不同。
由于经费有限,请帮助小明计算他至少要花费多少费用才能使这 n 个村庄都通电。
输入格式
输入的第一行包含一个整数 n ,表示村庄的数量。
接下来 n 行,每个三个整数 x, y, h,分别表示一个村庄的横、纵坐标和高度,其中第一个村庄可以建立发电站。
输出格式
输出一行,包含一个实数,四舍五入保留 2 位小数,表示答案。
样例输入
4
1 1 3
9 9 7
8 8 6
4 5 4
样例输出
17.41
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 100;
对于所有评测用例,1 <= n <= 1000,0 <= x, y, h <= 10000。
题解
通过阅读题面了解到是最小生成树的模板题。接收完数据后,需要通过题目给出的公式算出两点之间的权重,结果保存到一个邻接矩阵里(稠密图)。最后使用普里姆算法,设置第一个结点为起点,求出最小生成树。最后将所有边的权值加起来就是答案。输出可以使用printf("%.2f")格式化输出,最自动四舍五入。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#define N 1001
#define WHITE 0
#define GRAY 1
#define BLACK 2
#define INFTY 1 << 21
using namespace std;
double M[N][N], d[N];
int color[N], p[N], n;
struct Node {
double x, y, h;
} arr[N];
void prim () {
for (int i = 0; i < N; i++) {
color[i] = WHITE;
d[i] = INFTY;
}
d[0] = 0;
p[0] = -1;
int mincost, u;
while (1) {
mincost = INFTY;
for (int i = 0; i < n; i++) {
if (color[i] != BLACK && d[i] < mincost) {
mincost = d[i];
u = i;
}
}
if (mincost == INFTY)
break;
color[u] = BLACK;
for (int v = 0; v < n; v++) {
if (color[v] != BLACK && M[u][v]) {
d[v] = M[u][v];
p[v] = u;
color[v] = GRAY;
}
}
}
}
int main () {
cin >> n;
double x, y, h;
for (int i = 0; i < n; i++) {
cin >> x >> y >> h;
arr[i].x = x;
arr[i].y = y;
arr[i].h = h;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j)
M[i][j] = 0;
else {
x = (arr[i].x - arr[j].x) * (arr[i].x - arr[j].x);
y = (arr[i].y - arr[j].y) * (arr[i].y - arr[j].y);
h = (arr[i].h - arr[j].h) * (arr[i].h - arr[j].h);
M[i][j] = sqrt(x + y) + h;
}
}
}
prim();
double ans = 0;
for (int i = 0; i < n; i++)
ans += d[i];
printf("%.2f", ans);
return 0;
}