14、有限元和谱方法:从理论到实践

有限元和谱方法:从理论到实践

在数值计算领域,有限元方法是一种强大的工具,用于求解偏微分方程(PDEs)。本文将深入探讨有限元方法的边界条件处理、在Burgers方程中的应用,以及如何将其扩展到PDE系统,并介绍基于Hermitian元素的Galerkin方法。

1. 边界条件处理

边界条件在有限元方法中起着至关重要的作用,它决定了系统在边界上的行为。常见的边界条件有Dirichlet和Neumann两种类型。

1.1 Dirichlet边界条件

Dirichlet边界条件指定了依赖变量在边界上的值。具体表达式为:
[
\begin{cases}
x(z_L, t) = g_L(t) \
x(z_R, t) = g_R(t)
\end{cases}
]
通过将相关项代入并修改原系统方程,最终有限元方法(FEM)的系统方程可写为:
[
M\frac{\partial \tilde{x}}{\partial t} = (\Delta_0D_0 + \Delta_1D_1 + \Delta_2D_2) \tilde{x} + M \tilde{f}_{NL} + g
]
其中,向量 ( g ) 定义为:
[
g =
\begin{pmatrix}
-(x_1 - g_L) \
0 \
\vdots \
0 \
-(x_N - g_R)
\end{pmatrix}
]

1.2 Neumann边界条件

Neumann

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值