有限元和谱方法:从理论到实践
在数值计算领域,有限元方法是一种强大的工具,用于求解偏微分方程(PDEs)。本文将深入探讨有限元方法的边界条件处理、在Burgers方程中的应用,以及如何将其扩展到PDE系统,并介绍基于Hermitian元素的Galerkin方法。
1. 边界条件处理
边界条件在有限元方法中起着至关重要的作用,它决定了系统在边界上的行为。常见的边界条件有Dirichlet和Neumann两种类型。
1.1 Dirichlet边界条件
Dirichlet边界条件指定了依赖变量在边界上的值。具体表达式为:
[
\begin{cases}
x(z_L, t) = g_L(t) \
x(z_R, t) = g_R(t)
\end{cases}
]
通过将相关项代入并修改原系统方程,最终有限元方法(FEM)的系统方程可写为:
[
M\frac{\partial \tilde{x}}{\partial t} = (\Delta_0D_0 + \Delta_1D_1 + \Delta_2D_2) \tilde{x} + M \tilde{f}_{NL} + g
]
其中,向量 ( g ) 定义为:
[
g =
\begin{pmatrix}
-(x_1 - g_L) \
0 \
\vdots \
0 \
-(x_N - g_R)
\end{pmatrix}
]
1.2 Neumann边界条件
Neumann
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



