11、纳米生物传感器在传染病和生活方式相关疾病诊断中的应用

纳米生物传感器在传染病和生活方式相关疾病诊断中的应用

1. 纳米生物传感器简介

纳米生物传感器是一种结合了纳米技术和生物技术的新型传感器,在生物医学领域具有广泛的应用前景。它能够检测生物分子的微小变化,为疾病的早期诊断和治疗提供重要信息。

2. 纳米技术在生物传感器中的应用进展
  • 纳米材料的应用 :如碳纳米管、石墨烯、金属纳米粒子等,这些纳米材料具有独特的物理和化学性质,能够提高生物传感器的灵敏度和选择性。
    • 碳纳米管 :具有良好的导电性和生物相容性,可用于生物分子的固定和信号传导。
    • 石墨烯 :具有高比表面积和优异的电学性能,可用于构建高灵敏度的生物传感器。
    • 金属纳米粒子 :如金纳米粒子、银纳米粒子等,具有独特的光学和电学性质,可用于生物分子的标记和检测。
  • 纳米技术在生物传感器制备中的应用 :如纳米光刻、纳米印刷等技术,能够实现生物传感器的微型化和集成化。
3. 纳米生物传感器在传染病诊断中的应用
  • 病毒检测 :纳米生物传感器可用于检测多种病毒,如SARS、MERS、COVID - 19等。
    • 检测原理 :利用抗体、核酸等生物分子与病毒特异性结合,通过纳米材料的信号放大
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方的例子。 简单的平方问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值