题目描述
给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输入格式
第一行包含整数 �n,表示数字三角形的层数。
接下来 �n行,每行包含若干整数,其中第 �i 行表示数字三角形第 �i 层包含的整数。
输出格式
输出一个整数,表示最大的路径数字和。
样例
输入数据 1
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出数据 1
30
数据范围
1≤n≤500
−10000≤三角形中的整数≤10000
思路:这是一个动态规划类
1、本题当中可以将输入的数据输入二维数组当中,将其放置在下三角形当中
2、通过分析题目 ,可以得出一个递推方程
就是每次和其上方和左上方所对应的数相加,选取较大的数
f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]);
3、最后在最后一行选取一个最大的结果就是路径的和最大值
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 500, WE = 1e9;
int a[N][N], f[N][N];
int main() {
int n,ans;
cin >> n;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= i ; j++) {
cin >> a[i][j];
}
for (int i = 0; i <= n; i++)
for (int j = 0; j <= i + 1; j++)
f[i][j] = -WE;
f[1][1] = a[1][1];
for (int i = 2; i <= n; i++)
for (int j = 1; j <= i; j++) {
f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]);
}
ans = -WE;
for (int i = 1; i <= n; i++) {
ans = max(ans, f[n][i]);//比较选出最大的数
}
cout << ans << endl;
return 0;
}