数字三角形(3月22日)

该问题是一个动态规划问题,通过构建二维数组存储中间结果,利用递推公式f[i][j]=max(f[i-1][j-1]+a[i][j],f[i-1][j]+a[i][j])找到每一层的最大和,最终选取最后一行的最大值作为答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。

        7
      3   8
    8   1   0
  2   7   4   4
4   5   2   6   5

Copy

输入格式

第一行包含整数 �n,表示数字三角形的层数。

接下来 �n行,每行包含若干整数,其中第 �i 行表示数字三角形第 �i 层包含的整数。

输出格式

输出一个整数,表示最大的路径数字和。

样例

输入数据 1

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

Copy

输出数据 1

30

Copy

数据范围

1≤n≤500

−10000≤三角形中的整数≤10000

思路:这是一个动态规划类

1、本题当中可以将输入的数据输入二维数组当中,将其放置在下三角形当中

2、通过分析题目 ,可以得出一个递推方程

就是每次和其上方和左上方所对应的数相加,选取较大的数

f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]);

3、最后在最后一行选取一个最大的结果就是路径的和最大值

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 500, WE = 1e9;
int a[N][N], f[N][N];

int main() {
    int n,ans;
    cin >> n;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= i  ; j++) {
            cin >> a[i][j];
        }
    for (int i = 0; i <= n; i++)
        for (int j = 0; j <= i + 1; j++)
            f[i][j] = -WE;
    f[1][1] = a[1][1];
    for (int i = 2; i <= n; i++)
        for (int j = 1; j <= i; j++) {
            f[i][j] = max(f[i - 1][j - 1] + a[i][j],  f[i - 1][j] + a[i][j]);
        }
    ans = -WE;
    for (int i = 1; i <= n; i++) {
        ans = max(ans, f[n][i]);//比较选出最大的数
    }
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值