ST表,O(1)查询区间最大(小)值

 ST表首先预处理了一部分的区间最大值,处理的部分的左端点为数组的每个点,长度为2^{i}的所有区间,个数就是n\log_{2} n个,查询时将查询的区间分成可能有重叠的两部分,查询的值就是这两部分的最大值,

 分成的两部分的长度均为2^{i},这样两部分就都可以直接查询,

具体实现:

const int N = 1e5 + 7;
int f[N][18];
int a[N];
int n, m;
int getmax(int l, int r)
{
    int len = r - l + 1;
    int k = log(len) / log(2);
    return max(f[l][k], f[r + 1 - (1 << k)][k]);
}
int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
        cin >> a[i];
    for (int j = 0; j < 18; j++)
    {
        for (int i = 1; i + (1 << j) - 1 <= n; i++)
            if (j == 0)
                f[i][j] = a[i];
            else
                f[i][j] = max(f[i][j - 1], f[i + (1 << j - 1)][j - 1]);
    }
    int x, y;
    while (m--)
    {
        cin >> x >> y;
        cout << getmax(x, y) << endl;
    }
}

 

举个例子,假设要查询区间 [5,11] 中的最大值时len=7, k=\log_{2}7=2查询[5,9]和[7,11]的最大值就可以了,而二者即为预处理过的st[5][2],st[7][2],这样就做到了O(1)的查询。

查询最小值时只需要将代码中的max全部换为min即可。

例题: 1270. 数列区间最大值 - AcWing题库

同样的题目使用线段树可能也能通过,线段树的更新和查找都是O(\log n),建树是O(n\log n),所以总复杂度就是O((m+n)\log n)

而ST表是O(n\log n+m)的复杂度,并且常数小得多,代码短,但是不支持动态修改,总之各有优点。

同时吹爆AcWing,y总nb

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值