八皇后问题

本文详细介绍了八皇后问题的解决方法,包括非递归算法和递归算法。非递归算法通过数学证明优化了步长,从而减少了遍历次数;递归算法则通过回溯思想,逐行放置皇后并检查冲突,最终输出所有符合条件的解。该文提供了两种算法的代码实现,便于读者理解和实践。
摘要由CSDN通过智能技术生成

八皇后问题解答:

解法1-非递归算法:

 

算法分析:

对于八个皇后的位置,可以看成一个由1,2,3,4,5,6,7,8组成的八位数,这个八位数的第n位的数字代表的是第n行皇后坐在的列数,有排列组合的可以组成这个数范围为12345678~87654321,那么只要把遍历下去,只要把符合题意的输出即可。

不过在此处有一个可以改进的地方就是可以有数学证明我们有1~8组成的数是一定可以被9整除的,所以我们的步长可以调整到9.

 

代码实现:

#include<stdio.h>

#include<math.h>

void main()

{

       inta[9],b[9],i,j,flag_1=1,flag_2=1;

       intcount=0;                    //解的个数

       longint  m;

       printf("\t八皇后问题\n\n");

       for(m=12345678;m<=87654321;m+=9)//步长是9

       {

              for(i=0;i<9;i++)            //初始化数组或清零

              {

                     a[i]=0;

                     b[i]=0;

              }

              j=8;

              while(m>0)                  //分离整数

              {

                     a[j]=m%10;

                     b[a[j]]=1;

                     m=m/10;

                     j--;

              }

              for(i=1;i<9;i++)               //判断是否同列

                     if(b[i]!=1)

                            flag_1=0;

                       

              for(i=1;i<8;++i)

                     for(j=i+1;j<9;++j)

                            if((j-i)==abs(a[i]-a[j]))

                                   flag_2=0;

              if((flag_1==0)||(flag_2==0))

                     continue;

 

              printf("第%d个解是:\n\t",++count);

              for(i=1;i<9;i++)            //输出解

                     printf("(%d,%d)",i,a[i]);

              printf("\n");

       }

}

 

解法2-递归算法

算法分析:

 

代码实现:

#include<stdio.h>

#include<math.h>

#define N 20

int row[N+1];               //存放皇后所在的行号

int count=0;                //解的个数

int flag=0;                 //判断是否有解

//输出解

void print(int n)

{

       inti;

       ++count;

       flag=1;

      

       printf("第%d个解:\n\t",count);

       for(i=1;i<=n;i++)

              printf("(%d,%d)",row[i],i);

       printf("\n");

}

 

//判断在i行k列放皇后是否合法

int judge(int i,int k)

{

       intm;

       for(m=1;m<k;m++)

              if(i==row[m]||(abs(m-k)==abs(row[m]-i)))

                     return0;

 

       return1;

}

 

//放皇后

void place(int k,int n)

{

       inti,flag=0;

       if(k>n)

      

              print(n);

       else

              for(i=1;i<=n;i++)

                     if(judge(i,k))

                     {

                            row[k]=i;

                            place(k+1,n);

                     }

      

}

//主函数 

void main()

{

       intn;

       printf("\t经典算法-八皇后问题\n\n");

       printf("输入皇后个数(1~20)n=:");

       scanf("%d",&n);

       while(n<1||n>20)               //皇后个数输入不合法,提示重新输入

       {

              printf("输入的皇后个数不合法,请重新输入(1~20):\n");

              scanf("%d",&n);

       }

       printf("%d个皇后的求解如下:\n",n);

       place(1,n);

       if(!flag)

              printf("\t\t无解!\n");

       printf("\n");

}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值