【目标识别】yolo3_keras旗帜识别&训练自己数据

640?wx_fmt=gif

向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程   公众号:datayx

项目地址

https://github.com/ZzzzzZXxxX/yolo3_keras_Flag_Detection

项目环境依赖

640?wx_fmt=png

数据集提供

  • 旗帜(包含40个种类旗帜),数据来着于网络,数据标注是个苦力活,本数据包含1600多张图片,花费接近一个星期标注完成,且用且珍惜!!!

链接:https://pan.baidu.com/s/1sgDehVpMUrXb3AHceTimfA 

码:pgmn

  • 直接将两个文件夹放置于model_data下

快速开始

1. 下载本项目预训练 权重
  • 权重1

https://pan.baidu.com/s/1X08Mj2owTcOJQfsBEpf0YA
  • 权重2

https://pan.baidu.com/s/1MIBU41gW1x7aqgQhwglAcw
2. 修改yolo.py中第24行权重路径
3. 将需要检测旗帜图片放入sample文件夹中
4. 运行检测
python yolo_images.py


训练

训练自己的数据 无需使用 预训练的权重 (此方法适用于各类数据)
step 1
  • 使用labelImg对数据进行标记

  • 得到xml文件,放置于./model_data/label_train/将图片数据放在于./model_data/train/ (建议图片宽高大于416,不然影响训练)

  • 将数据类别写入my_classes.txt中(本项目中name_classes.txt为自定义文件,因为数据标记时,标记的为类别id,为了方便检测时直接输出类别,自己数据预测时将yolo.py中的classes_path修改为自己的)

step 2
  • 执行xml_to_data.py 生成 kitti_simple_label.txt

python xml_to_data.py
step 3
  • k-means 聚类算法生成对应自己样本的 anchor box 尺寸 生成 my_anchors.txt

python kmeans.py
step 4
  • 开始训练(建议epochs大于500,如果内存溢出可减小batch_size。其他参数,按照自己数据,自行修改。)

python train.py

本项目里有40类旗帜

640?wx_fmt=png

实验效果

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

阿里云双11大促  服务器ECS  数据库 全场1折

活动地址

640?wx_fmt=png

1核2G1M,86一年,¥229三年

2核4G3M,¥799三年

2核8G5M,¥1399三年

......


阅读过本文的人还看了以下文章:

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

640?wx_fmt=jpeg

长按图片,识别二维码,点关注

AI项目体验

https://loveai.tech

640?wx_fmt=png

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值