中文医学知识的大语言模型:本草(原名:华驼)

9d91bf8a99ad1665d2b74dd99a745a59.gif

向AI转型的程序员都关注公众号 机器学习AI算法工程

本项目开源了经过中文医学指令精调/指令微调(Instruction-tuning) 的大语言模型集,包括LLaMA、Alpaca-Chinese、Bloom、活字模型等。

ae2d1cc1100881df1b44924ec40c2639.png

我们基于医学知识图谱以及医学文献,结合ChatGPT API构建了中文医学指令微调数据集,并以此对各种基模型进行了指令微调,提高了基模型在医疗领域的问答效果。

基于相同的数据,我们还训练了医疗版本的ChatGLM模型: ChatGLM-6B-Med

完整项目代码获取地址:

关注微信公众号 datayx  然后回复 本草  即可获取。

方法

基模型在医学问答场景下效果有限,指令微调是一种高效的使基模型拥有回答人类问题能力的方法。

数据集构建

医学知识库我们采用了公开和自建的中文医学知识库,主要参考了cMeKG。

医学知识库围绕疾病、药物、检查指标等构建,字段包括并发症,高危因素,组织学检查,临床症状,药物治疗,辅助治疗等。知识库示例如下:

{"中心词": "偏头痛", "相关疾病": ["妊娠合并偏头痛", "恶寒发热"], "相关症状": ["皮肤变硬", "头部及眼后部疼痛并能听到连续不断的隆隆声", "晨起头痛加重"], "所属科室": ["中西医结合科", "内科"], "发病部位": ["头部"]}

我们利用GPT3.5接口围绕医学知识库构建问答数据,设置了多种Prompt形式来充分利用知识。

指令微调的训练集数据示例如下:

"问题:一位年轻男性长期使用可卡因,突然出现胸痛、呕吐、出汗等症状,经检查发现心电图反映心肌急性损伤,请问可能患的是什么疾病?治疗方式是什么?"

回答: 可能患的是心肌梗塞,需要进行维拉帕米、依普利酮、硝酸甘油、ß阻滞剂、吗啡等药物治疗,并进行溶栓治疗、低分子量肝素、钙通道阻滞剂等辅助治疗。此外需要及时停用可卡因等药物,以防止病情加重。"

我们提供了模型的训练数据集,共计八千余条,需要注意的是,虽然训练集的构建融入了知识,但是仍存在错误和不完善的地方,后续我们会利用更好的策略迭代更新数据集。

医学文献

此外,我们收集了2023年关于肝癌疾病的中文医学文献,利用GPT3.5接口围绕医学文献的【结论】构建多轮问答数据。在·./data_literature/liver_cancer.json中我们提供了其中的1k条训练样例。目前,训练样本的质量仍然有限,在后续我们会进一步迭代数据,会以公开数据集的形式对外进行发布。训练样本的示例如下:

93e3f31046cd97d54f4871637fc1fbcc.png

模型效果对比

224acf51cd6135aea0087bf355588f2d.png

常见问题

  1. Q: 为什么更名为"本草"?

    A: 为SCIR实验室大语言模型命名一致性,中文医学大模型名称调整为"本草"。

  2. Q: 为什么是"华驼"而不是"华佗"?

    A: 叫”驼“是因为我们的基模型LLaMA是美洲驼,Alpaca是羊驼,受他们名字的启发以及华佗的谐音梗,我们将我们的模型起名为华驼。

  3. Q: 有使用中医理论或者中医数据吗?

    A: 目前还没有

  4. Q: 模型运行的结果不同、效果有限

    A: 由于生成模型生成多样性的考量,多次运行的结果可能会有差异。当前开源的模型由于LLaMA及Alpaca中文语料有限,且知识结合的方式较为粗糙,请大家尝试bloom-based和活字-based的模型。

  5. Q: 模型无法运行/推理内容完全无法接受

    A: 请确定已安装requirements中的依赖、配置好cuda环境并添加环境变量、正确输入下载好的模型以及lora的存储位置;推理内容如存在重复生成或部分错误内容属于llama-based模型的偶发现象,与llama模型的中文能力、训练数据规模以及超参设置均有一定的关系,请尝试基于活字的新模型。如存在严重问题,请将运行的文件名、模型名、lora等配置信息详细描述在issue中,谢谢大家。

  6. Q: 发布的若干模型哪个最好?

    A: 根据我们的经验,基于活字模型的效果相对更好一些。

机器学习算法AI大数据技术

 搜索公众号添加: datanlp

da53f9c887c04bec9c9e942da0b71b8d.jpeg

长按图片,识别二维码

阅读过本文的人还看了以下文章:

实时语义分割ENet算法,提取书本/票据边缘

整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主

《大语言模型》PDF下载

动手学深度学习-(李沐)PyTorch版本

YOLOv9电动车头盔佩戴检测,详细讲解模型训练

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

c1c5cf752ad596ca4144a3933ccae01a.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值