分支界限法
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树,裁剪那些不能得到最优解的子树以提高搜索效率。
分支界限法解题的一般思路:
(1)分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约
束条件的解中找出在某种意义下的最优解。
(2)搜索方式:以广度优先或以最小耗费优先的方式搜索解空间树。分支限
界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(3)在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一
旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可
行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(4)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩
展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。
旅行售货员问题
某售货员要到若干城市去推销商品,已知各城市之间的路程(旅费),他要
选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程(总
旅费)最小。
求解思想:
旅行售货员问题的解空间可以组织成一棵树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图 G 中找出费用最小的周游路线。路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括 V 中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。
在具体实现时,用邻接矩阵表示所给的图G。在类Traveing中用二维数组a存储图G的邻接矩阵。
template <class Type>
class Traveling
{
public:
Type BBTSP(int *v, Type **, int, Type);
private:
Type **a, //图G的邻接矩阵
NoEdge; //图G的无边标志
int n; //图G的顶点数
};
要找最小费用旅行售货员回路,选用最小堆表示活结点优先队列。最小堆中元素的类型为MinHeapNode。该类型结点包含域x,用于记录当前解;s表示结点在排列树中的层次,从排列树的根结点到该结点的路径为x[0:s],需要进一步搜索的顶点是x[s+1:n-1]。cc表示当前费用,lcost是子树费用的下界,rcost是x[x:n-1]中顶点最小出边费用和。
//队列中元素类型
template <class Type>
class MinHeapNode
{
template <class T>
friend class Traveling;
public:
bool operator < (const MinHeapNode &MH) const
{
return lcost > MH.lcost;
}
private:
Type rcost, //x[s:n-1]中顶点最小出边费用和
lcost, //子树费用的下界
cc; //当前费用
int s, //根结点到当前结点的路径为x[0:s]
*x; //需要进一步搜索的顶点是x[s+1:n-1]
};
算法开始时创建一个最小堆,表示活结点优先队列。堆中每个结点的lcost值是优先队列的优先级。接着计算出图中每个顶点的最小费用出边并用Minout记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。如果每个顶点都有出边,则根据计算出的Minout作算法初始化。算法的第一个扩展结点是排列树中根结点的唯一儿子结点。在该结点处,已确定的回路中唯一顶点为顶点1.初始时有s=0,x[0]=1,x[1:n-1]=(2,3,…,n),cc=0且 rcost = \sum_{j=s}^{n}Minout[i],算法中用bestc记录当前最优值。
template <class Type>
Type Traveling<Type>::BBTSP(int *v, Type **G, int tn, Type tNoEdge)
{
priority_queue<MinHeapNode<Type> > pq;
MinHeapNode<Type> E, N;
Type bestc, cc, rcost, MinSum, *MinOut, b;
int i, j;
a = G;
n = tn;
NoEdge = tNoEdge;
MinSum = 0; //最小出边费用和
MinOut = new Type[n+1]; //计算MinOut[i]=顶点i的最小出边费用
for(i = 1; i <= n; i++)
{
MinOut[i] = NoEdge;
for(j = 1; j <= n; j++)
if(a[i][j] != NoEdge && (a[i][j] < MinOut[i] || MinOut[i] == NoEdge))
MinOut[i] = a[i][j];
if(MinOut[i] == NoEdge) //无回路
return NoEdge;
MinSum += MinOut[i];
}
//初始化
E.s = 0;
E.cc = 0;
E.rcost = MinSum;
E.x = new int[n];
for(i = 0; i < n; i++)
E.x[i] = i+1;
bestc = NoEdge;
//搜索排列空间树
while(E.s < n-1) //非叶结点
{
if(E.s == n-2) //当前扩展结点是叶结点的父结点 再加2条边构成回路
{ //所构成回路是否优于当前最优解
if(a[E.x[n-2]][E.x[n-1]] != NoEdge && a[E.x[n-1]][1] != NoEdge &&
(E.cc+a[E.x[n-2]][E.x[n-1]]+a[E.x[n-1]][1] < bestc || bestc==NoEdge))
{
//费用更小的路
bestc = E.cc + a[E.x[n-2]][E.x[n-1]] + a[E.x[n-1]][1];
E.cc = bestc;
E.lcost = bestc;
E.s++;
pq.push(E);
}
else
delete []E.x; //舍弃扩展结点
}
else //产生当前扩展结点儿子结点
{
for(i = E.s+1; i < n; i++)
if(a[E.x[E.s]][E.x[i]] != NoEdge)
{
//可行儿子结点
cc = E.cc + a[E.x[E.s]][E.x[i]]; //当前费用
rcost = E.rcost - MinOut[E.x[E.s]]; //更新最小出边费用和
b = cc + rcost; //下界
if(b < bestc || bestc == NoEdge) //子树可能含最优解 结点插入最小堆
{
N.s = E.s + 1;
N.cc = cc;
N.lcost = b;
N.rcost = rcost;
N.x = new int[n];
for(j = 0; j < n; j++)
N.x[j] = E.x[j];
N.x[E.s+1] = E.x[i]; //获得新的路径
N.x[i] = E.x[E.s+1];
pq.push(N); //加入优先队列
}
}
delete []E.x; //完成结点扩展
}
if(pq.empty()) //堆已空
break;
E = pq.top(); //取下一扩展结点
pq.pop();
}
if(bestc == NoEdge) //无回路
return NoEdge;
for(i = 0; i < n; i++) //将最优解复制到v[1:n]
v[i+1] = E.x[i];
while(pq.size()) //释放最小堆中所有结点
{
E = pq.top();
pq.pop();
delete []E.x;
}
return bestc;
}