算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析

分支界限法

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树,裁剪那些不能得到最优解的子树以提高搜索效率。

分支界限法解题的一般思路:

(1)分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约
束条件的解中找出在某种意义下的最优解。
(2)搜索方式:以广度优先或以最小耗费优先的方式搜索解空间树。分支限
界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(3)在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一
旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可
行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(4)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩
展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

旅行售货员问题

某售货员要到若干城市去推销商品,已知各城市之间的路程(旅费),他要
选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程(总
旅费)最小。
在这里插入图片描述

求解思想:

旅行售货员问题的解空间可以组织成一棵树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图 G 中找出费用最小的周游路线。路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括 V 中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。

在具体实现时,用邻接矩阵表示所给的图G。在类Traveing中用二维数组a存储图G的邻接矩阵。

template <class Type>
class Traveling
{
public:
    Type BBTSP(int *v, Type **, int, Type);
private:
    Type **a,                                   //图G的邻接矩阵
         NoEdge;                                //图G的无边标志
    int n;                                      //图G的顶点数
};

要找最小费用旅行售货员回路,选用最小堆表示活结点优先队列。最小堆中元素的类型为MinHeapNode。该类型结点包含域x,用于记录当前解;s表示结点在排列树中的层次,从排列树的根结点到该结点的路径为x[0:s],需要进一步搜索的顶点是x[s+1:n-1]。cc表示当前费用,lcost是子树费用的下界,rcost是x[x:n-1]中顶点最小出边费用和。

//队列中元素类型
template <class Type>
class MinHeapNode
{
    template <class T>
    friend class Traveling;
public:
    bool operator < (const MinHeapNode &MH) const
    {
        return lcost > MH.lcost;
    }
private:
    Type rcost,                                 //x[s:n-1]中顶点最小出边费用和
         lcost,                                 //子树费用的下界
         cc;                                    //当前费用
    int s,                                      //根结点到当前结点的路径为x[0:s]
        *x;                                     //需要进一步搜索的顶点是x[s+1:n-1]
};

算法开始时创建一个最小堆,表示活结点优先队列。堆中每个结点的lcost值是优先队列的优先级。接着计算出图中每个顶点的最小费用出边并用Minout记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。如果每个顶点都有出边,则根据计算出的Minout作算法初始化。算法的第一个扩展结点是排列树中根结点的唯一儿子结点。在该结点处,已确定的回路中唯一顶点为顶点1.初始时有s=0,x[0]=1,x[1:n-1]=(2,3,…,n),cc=0且 rcost = \sum_{j=s}^{n}Minout[i],算法中用bestc记录当前最优值。

template <class Type>
Type Traveling<Type>::BBTSP(int *v, Type **G, int tn, Type tNoEdge)
{
    priority_queue<MinHeapNode<Type> > pq;
    MinHeapNode<Type> E, N;
    Type bestc, cc, rcost, MinSum, *MinOut, b;
    int i, j;
 
    a = G;
    n = tn;
    NoEdge = tNoEdge;
    MinSum = 0;                                             //最小出边费用和
    MinOut = new Type[n+1];                                 //计算MinOut[i]=顶点i的最小出边费用
    for(i = 1; i <= n; i++)
    {
        MinOut[i] = NoEdge;
        for(j = 1; j <= n; j++)
            if(a[i][j] != NoEdge && (a[i][j] < MinOut[i] || MinOut[i] == NoEdge))
                MinOut[i] = a[i][j];
        if(MinOut[i] == NoEdge)                             //无回路
            return NoEdge;
        MinSum += MinOut[i];
    }
    //初始化
    E.s = 0;
    E.cc = 0;
    E.rcost = MinSum;
    E.x = new int[n];
    for(i = 0; i < n; i++)
        E.x[i] = i+1;
    bestc = NoEdge;
    //搜索排列空间树
    while(E.s < n-1)                                        //非叶结点
    {
        if(E.s == n-2)                                      //当前扩展结点是叶结点的父结点 再加2条边构成回路
        {                                                   //所构成回路是否优于当前最优解
            if(a[E.x[n-2]][E.x[n-1]] != NoEdge && a[E.x[n-1]][1] != NoEdge &&
            (E.cc+a[E.x[n-2]][E.x[n-1]]+a[E.x[n-1]][1] < bestc || bestc==NoEdge))
            {
                //费用更小的路
                bestc = E.cc + a[E.x[n-2]][E.x[n-1]] + a[E.x[n-1]][1];
                E.cc = bestc;
                E.lcost = bestc;
                E.s++;
                pq.push(E);
            }
            else
                delete []E.x;                               //舍弃扩展结点
        }
        else                                                //产生当前扩展结点儿子结点
        {
            for(i = E.s+1; i < n; i++)
                if(a[E.x[E.s]][E.x[i]] != NoEdge)
                {
                    //可行儿子结点
                    cc = E.cc + a[E.x[E.s]][E.x[i]];        //当前费用
                    rcost = E.rcost - MinOut[E.x[E.s]];     //更新最小出边费用和
                    b = cc + rcost;                         //下界
                    if(b < bestc || bestc == NoEdge)        //子树可能含最优解 结点插入最小堆
                    {
                        N.s = E.s + 1;
                        N.cc = cc;
                        N.lcost = b;
                        N.rcost = rcost;
                        N.x = new int[n];
                        for(j = 0; j < n; j++)
                            N.x[j] = E.x[j];
                        N.x[E.s+1] = E.x[i];                //获得新的路径
                        N.x[i] = E.x[E.s+1];
                        pq.push(N);                         //加入优先队列
                    }
                }
 
            delete []E.x;                                   //完成结点扩展
        }
        if(pq.empty())                                      //堆已空
            break;
        E = pq.top();                                       //取下一扩展结点
        pq.pop();
    }
 
    if(bestc == NoEdge)                                     //无回路
        return NoEdge;
    for(i = 0; i < n; i++)                                  //将最优解复制到v[1:n]
        v[i+1] = E.x[i];
    while(pq.size())                                        //释放最小堆中所有结点
    {
        E = pq.top();
        pq.pop();
        delete []E.x;
    }
 
    return bestc;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Whitemeen太白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值