给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数。
函数应该返回这两个下标值 index1 和 index2,其中 index1 必须小于 index2。
说明:
- 返回的下标值(index1 和 index2)不是从零开始的。
- 你可以假设每个输入只对应唯一的答案,而且你不可以重复使用相同的元素。
示例:
输入: numbers = [2, 7, 11, 15], target = 9
输出: [1,2]
解释: 2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。
首先想到的一定是暴力解法,选择排序思想遍历整个数组,找到就返回;
双层循环,(O^2)
class Solution {
public int[] twoSum(int[] numbers, int target) {
int len = numbers.length;
int[] num = new int[2];
out:
for(int i = 0 ;i<len-1;i++){
for(int j = i+1;j<len;j++){
if(numbers[i]+numbers[j]==target){
num[0] = i+1;
num[1] = j+1;
break out;
}
}
}//end of for
return num;
}
}
哈哈!很遗憾暴力解法超出时间的限制!
根据题上暴力解法没有充分利用原数组的性质----有序
那么就可以采用二分法搜索(nlogn)解决10w +、100w+的数据量应该是没问题的
class Solution {
public static int binarySearch(int[] arr,int l,int r,int target){
//二分查找算法
if(l<=r){
int mid = l+(r-l)/2;
//System.out.println("l:"+l+" r:"+r+" mid2:"+mid);
if(arr[mid] == target)return mid;
if(arr[mid]>target){
return binarySearch(arr, l, mid-1, target);
}else{
return binarySearch(arr, mid+1, r, target);
}
}
return -1;
}
public int[] twoSum(int[] numbers, int target) {
int len = numbers.length;
int[] nums = new int[2];
for(int i = 0;i<len-1;i++){//遍历数组的每一个元素然后在这个元素后找target-nums[i]
int mid = binarySearch(numbers,i+1,len-1,target-numbers[i]);
if(mid!=-1){
nums[0]=i+1;
nums[1]=mid+1;
}
}//end of for
return nums;
}
}
采用对撞指针:
从头尾来找!时间复杂度0(n)
class Solution {
public int[] twoSum(int[] numbers, int target) {
int l = 0; //头指针
int r = numbers.length-1; //尾指针
int[] nums = new int[2];
while(l<r){
if(numbers[l]+numbers[r]==target){
nums[0]=l+1;
nums[1]=r+1;
return nums;
}else if(numbers[l]+numbers[r]<target){
l++;
}else{
r--;
}
}//end of while
return nums;
}
}