本篇介绍分布式一致性算法:Paxos算法
Paxos算法是莱斯利·兰伯特(Leslie Lamport,就是 LaTeX 中的"La",此人现在在微软研究院)于1990年提出的一种基于消息传递的一致性算法。Paxos还被认为是到目前为止唯一的分布式一致性算法,其它的算法都是Paxos的改进或简化。Apache的Zookeeper都是基于它的理论来实现的。
不仅仅是分布式系统中,凡是多个过程需要达成某种一致的场合都可以使用Paxos 算法。一致性算法可以通过共享内存(需要锁)或者消息传递实现,Paxos 算法采用的是后者。Paxos 算法适用的几种情况:一台机器中多个进程/线程达成数据一致;分布式文件系统或者分布式数据库中多客户端并发读写数据;分布式存储中多个副本响应读写请求的一致性。
Paxos描述了这样一个场景,有一个叫做Paxos的小岛(Island)上面住了一批居民,岛上面所有的事情由一些特殊的人决定,他们叫做议员(Senator)。议员的总数(Senator Count)是确定的,不能更改。岛上每次环境事务的变更都需要通过一个提议(Proposal),每个提议都有一个编号(PID),这个编号是一直增长的,不能倒退。每个提议都需要超过半数((Senator Count)/2 +1)的议员同意才能生效。每个议员只会同意大于当前编号的提议,包括已生效的和未生效的。如果议员收到小于等于当前编号的提议,他会拒绝,并告知对方:你的提议已经有人提过了。这里的当前编号是每个议员在自己记事本上面记录的编号,他不断更新这个编号。整个议会不能保证所有议员记事本上的编号总是相同的。现在议会有一个目标:保证所有的议员对于提议都能达成一致的看法。
小岛(Island)——ZK Server Cluster
议员(Senator)——ZK Server
提议(Proposal)——ZNode Change(Create/Delete/SetData…)
提议编号(PID)——Zxid(ZooKeeper Transaction Id)
Paxos算法分为两个阶段:
阶段一:Proposer选择一个提案编号N,然后向半数以上的Acceptor发送编号为N的Prepare请求。(b) 如果一个Acceptor收到一个编号为N的Prepare请求,且N大于该Acceptor已经响应过的所有Prepare请求的编号,那么它就会将它已经接受过的编号最大的提案(如果有的话)作为响应反馈给Proposer,同时该Acceptor承诺不再接受任何编号小于N的提案。
阶段二:如果Proposer收到半数以上Acceptor对其发出的编号为N的Prepare请求的响应,那么它就会发送一个针对[N,V]提案的Accept请求给半数以上的Acceptor。注意:V就是收到的响应中编号最大的提案的value,如果响应中不包含任何提案,那么V就由Proposer自己决定。(b) 如果Acceptor收到一个针对编号为N的提案的Accept请求,只要该Acceptor没有对编号大于N的Prepare请求做出过响应,它就接受该提案。