[Python爬虫] 五、数据提取之正则表达式re模块


往期内容提要:


一、非结构化数据与结构化数据

一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值。内容一般分为两部分,非结构化的数据 和 结构化的数据。

  • 非结构化数据:先有数据,再有结构。
  • 结构化数据:先有结构、再有数据。
  • 不同类型的数据,我们需要采用不同的方式来处理。
处理方式 非结构化数据 结构化数据
正则表达式 文本、电话号码、邮箱地址、HTML 文件 XML 文件
XPath HTML 文件 XML 文件
CSS选择器 HTML 文件 XML 文件
JSON Path JSON 文件
转化成Python类型 JSON 文件(json类)、XML 文件(xmltodict)

二、了解正则表达式

爬虫一共四个主要步骤:

  1. 明确目标 (要知道你准备在哪个范围或者网站去搜索)
  2. 爬 (将所有的网站的内容全部爬下来)
  3. 取 (去掉对我们没用处的数据)
  4. 处理数据(按照我们想要的方式存储和使用)

在前面的学习中,我们掌握了“爬”数据方法,此时我们down下的数据是全部的网页,这些数据很庞大并且很混乱,大部分的东西使我们不关心的,因此我们需要将之按我们的需要过滤和匹配出来,这就涉及到爬虫的第三步:提取。

当前,对于文本的过滤或者规则的匹配,最强大的就是正则表达式,他同时适用于结构化与非结构化数据的提取,是Python爬虫世界里必不可少的神兵利器。

正则表达式,又称规则表达式,通常被用来检索、替换那些符合某个模式(规则)的文本。

正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个"规则字符串",这个"规则字符串"用来表达对字符串的一种过滤逻辑。

给定一个正则表达式和另一个字符串,我们可以达到如下的目的:

  • 给定的字符串是否符合正则表达式的过滤逻辑("匹配");
  • 通过正则表达式,从文本字符串中获取我们想要的特定部分("过滤")。

在这里插入图片描述


三、正则表达式匹配规则

在这里插入图片描述

? = {0,1} ; + = {1,+∞} ; * = {0,+∞}
定位: re.findall("(?<=xxxxx).*?(?=xxxxx)") ;其中xxx是前后限定的内容,.*?是取得的内容


四:Python 的 re 模块

在 Python 中,我们可以使用内置的 re 模块来使用正则表达式。

有一点需要特别注意的是,正则表达式使用 对特殊字符进行转义,所以如果我们要使用原始字符串,只需加一个 r 前缀,示例:

r'chuanzhiboke\t\.\tpython'

re 模块的一般使用步骤如下:

  1. 使用 compile() 函数将正则表达式的字符串形式编译为一个 Pattern 对象

  2. 通过 Pattern 对象提供的一系列方法对文本进行匹配查找,获得匹配结果,一个 Match 对象。

  3. 最后使用 Match 对象提供的属性和方法获得信息,根据需要进行其他的操作

import re

# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')

接下来,我们就可以利用 pattern 的一系列方法对文本进行匹配查找了。

Pattern 对象的一些常用方法主要有:

  • match 方法:从起始位置开始查找,一次匹配
  • search 方法:从任何位置开始查找,一次匹配
  • findall 方法:全部匹配,返回列表
  • finditer 方法:全部匹配,返回迭代器
  • split 方法:分割字符串,返回列表
  • sub 方法:替换

(1)match 方法

match 方法用于查找字符串的头部(也可以指定起始位置),它是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果。它的一般使用形式如下:

match(string[, pos[, endpos]])

其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。因此,当你不指定 pos 和 endpos 时,match 方法默认匹配字符串的头部。

当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。

>>> import re
>>> pattern = re.compile(r'\d+')                      # 用于匹配至少一个数字

>>> m = pattern.match('one12twothree34four')          # 查找头部,没有匹配
>>> print (m)
None

>>> m = pattern.match('one12twothree34four', 2, 10)   # 从'e'的位置开始匹配,没有匹配
>>> print (m)
None

>>> m = pattern.match('one12twothree34four', 3, 10)   # 从'1'的位置开始匹配,正好匹配
>>> print (m)                                         # 返回一个 Match 对象
<_sre.SRE_Match object at 0x10a42aac0>

>>> m.group(0)   # 可省略 0
'12'
>>> m.start(0)   # 可省略 0
3
>>> m.end(0)     # 可省略 0
5
>>> m.span(0)    # 可省略 0
(3, 5)

在上面,当匹配成功时返回一个 Match 对象,其中:

  • group([group1, ...]) 方法用于获得一个或多个分组匹配的字符串,当要获得整个匹配的子串时,可直接使用 group() 或 group(0);

  • start([group]) 方法用于获取分组匹配的子串在整个字符串中的起始位置(子串第一个字符的索引),参数默认值为 0;

  • end([group]) 方法用于获取分组匹配的子串在整个字符串中的结束位置(子串最后一个字符的索引+1),参数默认值为 0;

  • span([group]) 方法返回 (start(group), end(group))。

再看看一个例子:

>>> import re
>>> pattern = re.compile(r'([a-z]+) ([a-z]+)', re.I)  # re.I 表示忽略大小写
>>> m = pattern.match('Hello World Wide Web')

>>> print (m)   # 匹配成功,返回一个 Match 对象
<_sre.SRE_Match object at 0x10bea83e8>

>>> m.group(0)  # 返回匹配成功的整个子串
'Hello World'

>>> m.span(0)   # 返回匹配成功的整个子串的索引
(0, 11)

>>> m.group(1)  # 返回第一个分组匹配成功的子串
'Hello'

>>> m.span(1)   # 返回第一个分组匹配成功的子串的索引
(0, 5)

>>> m.group(2)  # 返回第二个分组匹配成功的子串
'World'

>>> m.span(2)   # 返回第二个分组匹配成功的子串
(6, 11)

>>> m.groups()  # 等价于 (m.group(1), m.group(2), ...)
('Hello', 'World')

>>> m.group(3)  # 不存在第三个分组
  Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
  IndexError: no such group

(2)search 方法

search 方法用于查找字符串的任何位置,它也是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果,它的一般使用形式如下:

search(string[, pos[, endpos]])

其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。

当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。

让我们看看例子:

>>> import re
>>> pattern = re.compile('\d+')
>>> m = pattern.search('one12twothree34four')  # 这里如果使用 match 方法则不匹配
>>> m
<_sre.SRE_Match object at 0x10cc03ac0>
>>> m.group()
'12'
>>> m = pattern.search('one12twothree34four', 10, 30)  # 指定字符串区间
>>> m
<_sre.SRE_Match object at 0x10cc03b28>
>>> m.group()
'34'
>>> m.span()
(13, 15)

再来看一个例子:

# -*- coding: utf-8 -*-

import re
# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')
# 使用 search() 查找匹配的子串,不存在匹配的子串时将返回 None
# 这里使用 match() 无法成功匹配
m = pattern.search('hello 123456 789')
if m:
    # 使用 Match 获得分组信息
    print ('matching string:',m.group())
    # 起始位置和结束位置
    print ('position:',m.span())

执行结果:

matching string: 123456
position: (6, 12)

(3)findall 方法

上面的 match 和 search 方法都是一次匹配,只要找到了一个匹配的结果就返回。然而,在大多数时候,我们需要搜索整个字符串,获得所有匹配的结果。

findall 方法的使用形式如下:

findall(string[, pos[, endpos]])

其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。

findall 以列表形式返回全部能匹配的子串,如果没有匹配,则返回一个空列表。

看看例子:

import re
pattern = re.compile(r'\d+')   # 查找数字

result1 = pattern.findall('hello 123456 789')
result2 = pattern.findall('one1two2three3four4', 0, 10)

print (result1)
print (result2)

执行结果:

['123456', '789']
['1', '2']

再举一个例子:

# re_test.py

import re

#re模块提供一个方法叫compile模块,提供我们输入一个匹配的规则
#然后返回一个pattern实例,我们根据这个规则去匹配字符串
pattern = re.compile(r'\d+\.\d*')

#通过partten.findall()方法就能够全部匹配到我们得到的字符串
result = pattern.findall("123.141593, 'bigcat', 232312, 3.15")

#findall 以 列表形式 返回全部能匹配的子串给result
for item in result:
    print (item)

运行结果:

123.141593
3.15

(4)finditer 方法

finditer 方法的行为跟 findall 的行为类似,也是搜索整个字符串,获得所有匹配的结果。但它返回一个顺序访问每一个匹配结果(Match 对象)的迭代器。

看看例子:

# -*- coding: utf-8 -*-

import re
pattern = re.compile(r'\d+')

result_iter1 = pattern.finditer('hello 123456 789')
result_iter2 = pattern.finditer('one1two2three3four4', 0, 10)

print (type(result_iter1))
print (type(result_iter2))

print 'result1...'
for m1 in result_iter1:   # m1 是 Match 对象
    print ('matching string: {}, position: {}'.format(m1.group(), m1.span()))

print 'result2...'
for m2 in result_iter2:
    print ('matching string: {}, position: {}'.format(m2.group(), m2.span()))

执行结果:

<type 'callable-iterator'>
<type 'callable-iterator'>
result1...
matching string: 123456, position: (6, 12)
matching string: 789, position: (13, 16)
result2...
matching string: 1, position: (3, 4)
matching string: 2, position: (7, 8)

(5)split 方法

split 方法按照能够匹配的子串将字符串分割后返回列表,它的使用形式如下:

split(string[, maxsplit])

其中,maxsplit 用于指定最大分割次数,不指定将全部分割。

看看例子:

import re
p = re.compile(r'[\s\,\;]+')
print (p.split('a,b;; c   d'))

执行结果:

['a', 'b', 'c', 'd']

(6)sub 方法

sub 方法用于替换。它的使用形式如下:

sub(repl, string[, count])

其中,repl 可以是字符串也可以是一个函数:

  • 如果 repl 是字符串,则会使用 repl 去替换字符串每一个匹配的子串,并返回替换后的字符串,另外,repl 还可以使用 id 的形式来引用分组,但不能使用编号 0;

  • 如果 repl 是函数,这个方法应当只接受一个参数(Match 对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。

  • count 用于指定最多替换次数,不指定时全部替换。

看看例子:

import re
p = re.compile(r'(\w+) (\w+)') # \w = [A-Za-z0-9]
s = 'hello 123, hello 456'

print (p.sub(r'hello world', s))  # 使用 'hello world' 替换 'hello 123' 和 'hello 456'
print (p.sub(r'\2 \1', s))        # 引用分组

def func(m):
    print(m)
    return 'hi' + ' ' + m.group(2) #group(0) 表示本身,group(1)表示hello,group(2) 表示后面的数字

print (p.sub(func, s))  #多次sub,每次sub的结果传递给func
print (p.sub(func, s, 1))         # 最多替换一次

执行结果:

hello world, hello world
123 hello, 456 hello
hi 123, hi 456
hi 123, hello 456

(7)匹配中文

在某些情况下,我们想匹配文本中的汉字,有一点需要注意的是,中文的 unicode 编码范围 主要在 [u4e00-u9fa5],这里说主要是因为这个范围并不完整,比如没有包括全角(中文)标点,不过,在大部分情况下,应该是够用的。

假设现在想把字符串 title = u'你好,hello,世界' 中的中文提取出来,可以这么做:

import re

title = '你好,hello,世界'
pattern = re.compile(r'[\u4e00-\u9fa5]+')
result = pattern.findall(title)

print (result)

注意到,我们在正则表达式前面加上了两个前缀 ur,其中 r 表示使用原始字符串,u 表示是 unicode 字符串。

执行结果:

['你好', '世界']

五、贪婪模式与非贪婪模式

  1. 贪婪模式:在整个表达式匹配成功的前提下,尽可能多的匹配 ( * );
  2. 非贪婪模式:在整个表达式匹配成功的前提下,尽可能少的匹配 ( ? );
  3. Python里数量词默认是贪婪的。

示例一 : 源字符串:abbbc

  • 使用贪婪的数量词的正则表达式 ab* ,匹配结果: abbb。

    * 决定了尽可能多匹配 b,所以a后面所有的 b 都出现了。

  • 使用非贪婪的数量词的正则表达式ab*?,匹配结果: a。

    即使前面有 *,但是 ? 决定了尽可能少匹配 b,所以没有 b。

示例二 : 源字符串:aa<div>test1</div>bb<div>test2</div>cc

  • 使用贪婪的数量词的正则表达式:<div>.*</div>

  • 匹配结果:<div>test1</div>bb<div>test2</div>

这里采用的是贪婪模式。在匹配到第一个"</div>"时已经可以使整个表达式匹配成功,但是由于采用的是贪婪模式,所以仍然要向右尝试匹配,查看是否还有更长的可以成功匹配的子串。匹配到第二个"</div>"后,向右再没有可以成功匹配的子串,匹配结束,匹配结果为"<div>test1</div>bb<div>test2</div>"

  • 使用非贪婪的数量词的正则表达式:<div>.*?</div>

  • 匹配结果:<div>test1</div>

正则表达式二采用的是非贪婪模式,在匹配到第一个"</div>"时使整个表达式匹配成功,由于采用的是非贪婪模式,所以结束匹配,不再向右尝试,匹配结果为"<div>test1</div>"。

正则表达式测试网址


六、正则表达式爬虫实战

现在拥有了正则表达式这把神兵利器,我们就可以进行对爬取到的全部网页源代码进行筛选了。

下面我们一起尝试一下爬取内涵段子网站: http://www.neihan8.com/article/list_5_1.html

打开之后,不难看到里面一个一个灰常有内涵的段子,当你进行翻页的时候,注意url地址的变化:

  • 第一页url: http: //www.neihan8.com/article/list_5_1 .html

  • 第二页url: http: //www.neihan8.com/article/list_5_2 .html

  • 第三页url: http: //www.neihan8.com/article/list_5_3 .html

  • 第四页url: http: //www.neihan8.com/article/list_5_4 .html

这样我们的url规律找到了,要想爬取所有的段子,只需要修改一个参数即可。 下面我们就开始一步一步将所有的段子爬取下来吧。

第一步:获取数据

按照我们之前的用法,我们需要写一个加载页面的方法。这里我们统一定义一个类,将url请求作为一个成员方法处理。

创建一个文件,叫duanzi_spider.py,然后定义一个Spider类,并且添加一个加载页面的成员方法

class Duanzi_spider():
    def __init__(self):
        self.url = "http://www.neihan8.com/article/list_5_%s.html"
        self.headers = {
            "User_Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleW\
            ebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
            "Accept-Encoding":None,
            "Accept-Language": "zh-CN,zh;q=0.8"

        }

    def load_page(self,url):
            '''可以复用的页面请求方法
            '''
            response = requests.get(url,timeout=10,headers=self.headers)
            if response.status_code==200:
                    print(response.request.headers)
                    return response.content.decode("gbk")
            else:
                    raise ValueError("status_code is:",response.status_code)
  • 程序正常执行的话,我们会在屏幕上打印了内涵段子第一页的全部html代码。 但是我们发现,html中的中文部分显示的可能是乱码 。

注意 :对于每个网站对中文的编码各自不同,所以html.decode('gbk')的写法并不是通用写法,根据网站的编码而异

第二步:筛选数据

接下来我们已经得到了整个页面的数据。 但是,很多内容我们并不关心,所以下一步我们需要进行筛选。 如何筛选,就用到了正则表达式。

首先我们需要一个匹配规则,打开内涵段子的网页查看源代码:

<a href="/article/44959.html"><b>回家奔丧</b></a></h4>
    <div class="f18 mb20">
        一老太太跋山涉水来到部队,看望她的孙子,<br />
      警卫问:“她找谁?”老太说:“找xx,”警卫打完电话说:<br />
      “xx三天前说她他奶奶过世,回家奔丧去了,奔丧去了,去了。。”

   </div>

在我们得到的response中运用正则表达式进行筛选匹配:

import re

def get_content(self,html):
        '''  根据网页内容,同时匹配标题和段子内容
        '''
        pattern = re.compile(r'<a\shref="/article/\d+\.html">(.*?)</a>.*?<div\sclass="f18 mb20">(.*?)</div>', re.S)
        t = pattern.findall(html)
        result = []
        for i in t:
            temp = []
            for j in i:
                    j = re.sub(r"[<b>|</b>|<br />|<br>|<p>|</p>|\\u3000|\\r\\n|\s]","",j)
                    j = j.replace("&ldqo;",'"').replace("&helli;","...").replace("&dqo;",'"').strip()
                    # j = re.sub(r"[&ldqo;|&dqo;]","\"",j)?
                    # j = re.sub(r"…","...",j)
                    temp.append(j)
                print(temp)
            result.append(temp)
    return result
  • 这里需要注意一个是re.S是正则表达式中匹配的一个参数。

  • 如果 没有re.S 则是 只匹配一行 有没有符合规则的字符串,如果没有则下一行重新匹配。

  • 如果 加上re.S 则是将 所有的字符串 将一个整体进行匹配,findall 将所有匹配到的结果封装到一个list中。

第三步:保存数据

  • 我们可以将所有的段子存放在文件中。比如,我们可以将得到的每个item不是打印出来,而是存放在一个叫 duanzi.txt 的文件中也可以。
def save_content(self,content):
    myFile = open("./duanzi.txt", 'a')
    for temp in content:
        myFile.write("\n"+temp[0]+"\n"+temp[1]+"\n")
        myFile.write("-----------------------------------------------------")
    myFile.close()
  • 然后我们实现保存的方法 ,当前页面的所有段子就存在了本地的duanzi.txt文件中。

第四步:实现循环抓取

  • 接下来我们就通过参数的传递对page进行叠加来遍历 内涵段子吧的全部段子内容。

  • 同时也通过这个run方法实现整个程序的主要逻辑

def run(self):
        i = 1
        while True:
                html = self.load_page(self.url%i)
                result = self.get_content(html)
                print ("按回车继续...")
                print ("输入 quit 退出")
                command = input()
                if (command == "quit"):
                        break
                i+=1

最后,我们执行我们的代码,完成后查看当前路径下的duanzi.txt文件,里面已经有了我们要的内涵段子。


后期内容提要:


以上便是一个非常精简使用的小爬虫程序,使用起来很是方便,如果想要爬取其他网站的信息,只需要修改其中某些参数和一些细节就行了。如果您有任何疑问或者好的建议,期待你的留言与评论!

发布了83 篇原创文章 · 获赞 553 · 访问量 75万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503

分享到微信朋友圈

×

扫一扫,手机浏览