SDNU 1275.我的滑板鞋

本文介绍了一个简单的C++程序,该程序帮助用户筛选出尺码大于指定数值的滑板鞋数量。输入包括要检查的滑板鞋集合及其尺码,输出为符合条件的滑板鞋数量。

Description

TT最近迷上了收集各种滑板鞋,但他有个癖好:只收集尺码大于x的滑板鞋(x是大于0的整数)。请你帮他找出可以收集多少滑板鞋。

Input

第一行一个正整数N。接下来的N行每行第一个数M表示他要在M双滑板鞋里挑,第二个数x表示他要找出尺码大于x的滑板鞋,后边是M个数,分别是每双滑板鞋的尺码。

Output

输出N个情况下TT能收集多少双滑板鞋,每种情况之间有一个空行。

Sample Input

5
2 23 24 21
3 35 32 21 33
5 14 16 30 6 15 19
1 10 11
2 40 41 40 

Sample Output

Case 1:1

Case 2:0

Case 3:4

Case 4:1

Case 5:1
#include <cstdio>
#include <iostream>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>

using namespace std;

#define ll long long

int shoes[1000+8];
int main()
{
    int n, m, x, sum;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++)
    {
        scanf("%d%d", &m, &x);
        sum = 0;
        for(int j = 1; j <= m; j++)
        {
            scanf("%d", &shoes[j]);
            if(shoes[j]>x) sum++;
        }
        printf("Case %d:%d\n\n", i, sum);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/RootVount/p/10365847.html

Nano-ESG数据资源库的构建基于2023年初至2024年秋季期间采集的逾84万条新闻文本,从中系统提炼出企业环境、社会及治理维度的信息。其构建流程首先依据特定术语在德语与英语新闻平台上检索,初步锁定与德国DAX 40成分股企业相关联的报道。随后借助嵌入技术对文本段落执行去重操作,以降低内容冗余。继而采用GLiNER这一跨语言零样本实体识别系统,排除与目标企业无关的文档。在此基础上,通过GPT-3.5与GPT-4o等大规模语言模型对文本进行双重筛选:一方面判定其与ESG议题的相关性,另一方面生成简明的内容概要。最终环节由GPT-4o模型完成,它对每篇文献进行ESG情感倾向(正面、中性或负面)的判定,并标注所涉及的ESG具体维度,从而形成具备时序特征的ESG情感与维度标注数据集。 该数据集适用于多类企业可持续性研究,例如ESG情感趋势分析、ESG维度细分类别研究,以及企业可持续性事件的时序演变追踪。研究者可利用数据集内提供的新闻摘要、情感标签与维度分类,深入考察企业在不同时期的环境、社会及治理表现。此外,借助Bertopic等主题建模方法,能够从数据中识别出与企业相关的核心ESG议题,并观察这些议题随时间的演进轨迹。该资源以其开放获取特性与连续的时间覆盖,为探究企业可持续性表现的动态变化提供了系统化的数据基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值