- 博客(71)
- 收藏
- 关注
原创 AI Agent 原理解析及应用场景深度洞察
AIAgent,即人工智能代理,是一种能够感知其所处环境,并基于所感知的信息自主地采取行动以实现特定目标的软件或硬件实体。它具备自主性、反应性、主动性和社会性等关键特性。自主性意味着AIAgent能够在没有外部直接干预的情况下,自行决定执行何种行动,依据内部的决策机制和策略来运作。例如,一个智能客服AIAgent可以根据用户的提问,自主检索知识库并生成合适的回答,无需人工实时指导。反应性体现为AIAgent能够及时感知环境的变化,并对这些变化做出相应的反应。
2025-01-20 09:03:37 693
原创 设计模式之结构型模式
结构型模式主要关注如何将类或对象组合成更大的结构,以实现更复杂的功能。它就像是搭建积木,通过不同的组合方式,让简单的组件发挥出强大的作用。结构型模式可以分为类结构型模式和对象结构型模式,前者主要通过继承机制来组合类,后者则通过对象的组合来实现。结构型模式为我们在软件设计中构建复杂结构提供了有力的工具。通过合理运用这些模式,可以提高代码的可维护性、可扩展性和可复用性。在实际项目中,根据具体的需求选择合适的结构型模式,能够让我们的代码更加优雅、高效。希望这篇文章能帮助你更好地理解和运用设计模式中的结构型模式。
2025-01-20 08:53:42 205
原创 设计模式之桥接模式
定义抽象类的接口,并且包含一个对实现化对象的引用。它负责与客户端进行交互,并将请求委派给实现化对象来处理。扩充由抽象化角色定义的接口。通常情况下,它会调用实现化对象的方法来完成具体的业务逻辑。
2025-01-14 10:24:55 840
原创 设计模式之结构型模式
代理模式是为其他对象提供一种代理以控制对这个对象的访问。在某些情况下,一个对象不适合或者不能直接引用另一个对象,而代理对象可以在客户端和目标对象之间起到中介的作用。适配器模式将一个类的接口转换成客户希望的另外一个接口。适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。桥接模式将抽象部分与它的实现部分分离,使它们都可以独立地变化。它是一种对象结构型模式,通过将抽象和实现解耦,使得两者可以沿着各自的维度进行扩展。装饰器模式动态地给一个对象添加一些额外的职责。
2025-01-14 10:03:37 1050
原创 设计模式之装饰器模式
首先,我们定义一个Coffee接口,作为所有咖啡和调料的抽象组件。然后,我们定义一个CondimentDecorator抽象类,它继承自Coffee接口,并且包含一个指向Coffee对象的引用。装饰器模式是一种非常强大且灵活的设计模式,它通过在不改变原有类结构的基础上,为对象动态地添加新的功能,使得我们的代码更加符合开闭原则,具有更好的扩展性和维护性。虽然装饰器模式在某些情况下可能会带来一些复杂度,但只要我们合理地使用它,就能够在软件开发中发挥出巨大的作用。
2025-01-13 20:04:23 1445
原创 设计模式之原型模式
原型模式(Prototype Pattern)是一种创建型设计模式,它允许通过复制现有对象(原型)来创建新对象,而无需知道对象的具体创建细节。简单来说,就是当我们需要创建一个新对象时,不是通过传统的构造函数调用方式,而是找到一个已经存在的对象作为模板(原型),然后复制它来得到新对象。
2025-01-13 11:45:03 999
原创 kafka原理解析
一、基本概念与架构消息(Message):Kafka 中传递的数据单元,由消息头(可选)和消息体组成,消息体中包含了实际要传递的业务数据,例如用户的交易记录、日志信息等,通常以字节数组形式存在。 主题(Topic):类似于文件夹的概念,是对消息进行分类的逻辑单元,生产者将消息发送到特定的主题,消费者从相应主题中订阅并获取消息。比如可以有 “订单主题”“日志主题” 等,不同类型的消息放在不同的主题下方便管理和处理。 分区(Partition):为了实现数据的并行处理以及存储容量扩展等目的,每个主题可以
2025-01-12 22:21:28 639
原创 IT团队管理之道
在当今竞争激烈的 IT 行业,高效管理 IT 技术团队对于项目的成功推进以及企业的持续发展起着至关重要的作用。以下将从几个关键方面探讨如何有效管理 IT 技术团队,打造一支具备强大战斗力和创造力的精英团队。
2025-01-12 18:08:23 883
原创 Transformer入门教程全解析(一)
在当今深度学习领域,Transformer 无疑是一颗璀璨的明星,它如同一股强大的变革力量,席卷了自然语言处理(NLP)乃至更多领域。从机器翻译到文本生成,从问答系统到情感分析,Transformer 都展现出了卓越的性能,打破了传统模型的诸多局限。对于渴望深入探索深度学习奥秘的开发者和研究者来说,掌握 Transformer 已然成为一项必备技能。本教程将从基础概念讲起,逐步深入其架构细节、训练方法以及实际应用,带领大家开启一段精彩的 Transformer 学习之旅。
2025-01-10 22:33:29 324
原创 深入剖析 Java 设计模式之观察者模式
观察者模式(Observer Pattern),又被称作发布 - 订阅模式(Publish - Subscribe Pattern),它定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象。当主题对象的状态发生改变时,它会自动通知所有依赖它的观察者对象,使它们能够自动更新自身状态。简单来讲,这就好比报纸与读者的关系,报社(主题)出版新报纸(状态改变),订阅该报纸的读者(观察者)便能第一时间收到报纸阅读新内容(更新状态),而报社无需知晓每个读者的具体情况,读者们也只需关注自己感兴趣的报纸。
2025-01-10 22:21:03 1109
原创 深入理解 Java 设计模式之策略模式
策略模式(Strategy Pattern),也叫政策模式(Policy Pattern),它定义了一系列算法,将每个算法封装起来,并使它们可以相互替换。此模式让算法的变化独立于使用算法的客户,通过这种方式,算法的切换变得更加灵活,不会影响到客户端代码的稳定性。简单来说,就是把一个类中经常改变或者可能改变的部分提取出来,作为一个接口的实现类,而客户端代码则通过这个接口来调用相应的算法,而不用关心具体算法的实现细节。
2025-01-10 14:01:39 969
原创 人工智能-数据分析及特征提取思路
基于学生行为数据预测是否涉黄、涉黑等。数据分析的意义包括得到数据得直觉、发掘潜在的结构、提取重要的变量、删除异常值、检验潜在的假设和建立初步的模型。查看数据类型:首先明确各字段的数据类型,例如学生标识通常为字符串类型(如学号),访问时间一般是日期时间类型,访问网址、搜索关键词等为文本类型,停留时长、访问频次等则是数值类型,而是否涉黄涉黑标签多为整型(0 或 1)表示类别。确保数据类型的准确性对后续的处理和分析至关重要,若类型错误可能导致无法正确进行相应的计算或操作。值域范围检查(针对数值型字段):对于像
2025-01-10 11:14:40 1149
原创 卷积神经算法原理解析
在当今的人工智能领域,卷积神经网络(Convolutional Neural Network,简称 CNN)无疑是一颗最为璀璨的明星。它凭借卓越性能,在图像识别、目标检测、语义分割等诸多领域大显身手,让计算机拥有了 “看” 懂世界的神奇能力。然而,其背后精妙的算法原理,尤其是特征提取的具体步骤以及训练调优方法,宛如一座神秘宝藏等待挖掘。本篇博客将深入探究这些关键内容,带你领略 CNN 的无穷魅力。
2025-01-06 16:24:06 1077
原创 大模型中常见算法解析
在当今人工智能领域,大模型凭借其强大的学习能力和广泛的应用场景备受瞩目。以下将详细介绍一些大模型中常用算法的基本概念、适用场景以及数据特征处理方式。
2025-01-05 11:54:29 734
原创 IT 技术团队管理底层逻辑之一降本增效
本文深入探讨了 IT 技术管理的底层逻辑,围绕降本增效、技术赋能、知识沉淀以及行业影响力四个核心方面展开详细阐述,旨在为 IT 技术管理者提供全面且实用的管理思路与方法,助力打造高效、创新且具有行业竞争力的技术团队。
2025-01-01 17:39:44 752
原创 机器学习特征选择
在实际的数据集中,往往包含了大量的特征,但并非所有特征都对我们要预测的目标变量(如分类任务中的类别标签,回归任务中的数值目标)有积极作用。有些特征可能携带的信息量极少,甚至会引入噪声,干扰模型的学习和预测。特征选择就是要解决如何从这些繁杂的特征里挑出 “精华” 的问题。过滤式选择、包裹式选择和嵌入式选择这三种特征选择方法各有优劣,在实际的数据分析和机器学习项目中,需要根据数据特点、任务要求以及计算资源等多方面因素综合考虑来选用合适的特征选择方式。
2024-12-30 16:49:58 1613
原创 人工智能:Java 程序员的机遇与挑战并存
另一方面,企业对 AI 应用的需求将持续增长,Java 程序员凭借其深厚的工程素养、广阔的行业知识储备,将在 AI 项目的全生命周期中扮演不可或缺的角色。例如,在一个智能客服系统中,前端接收用户问题,后端 Java 程序则负责将问题传递给训练好的自然语言处理模型,再把模型返回的答案推送给用户,期间涉及到数据的预处理、模型调用的优化以及高并发场景下的响应保障等任务,为 Java 程序员提供了极具挑战性与成就感的工作内容,薪资待遇也颇为可观。大数据是 AI 的基石,大量的训练数据才能孕育出精准的 AI 模型。
2024-12-30 12:59:44 640
原创 机器学习 LightGBM 算法原理解析
LightGBM 是由微软公司开源的一种快速、高效的梯度提升框架,它基于决策树算法,采用了全新的优化策略,旨在解决大规模数据集和高维特征场景下的机器学习任务难题。与传统的 GBDT 算法相比,LightGBM 在训练速度、内存占用、模型精度等方面都有显著提升,这使得它迅速在数据科学社区走红,成为众多机器学习项目的首选算法之一。
2024-12-29 17:33:37 992
原创 Netty 2024 常见面试题
Netty 作为高性能网络编程领域的璀璨明星,无论是在当下的互联网应用开发,还是面向未来的新兴技术领域,都占据着举足轻重的地位。通过对 2024 年常见面试题的深入解析,涵盖基础、核心组件、编解码器、高性能机制、实际应用、可靠性保障以及未来展望等多个维度,希望读者能对 Netty 有全面、深入的理解。无论是准备面试的求职者,还是致力于提升技术水平的开发者,掌握 Netty 都将为个人技术成长与职业发展注入强大动力,助力大家在网络编程的浩瀚海洋中乘风破浪,驶向成功的彼岸。
2024-12-28 16:16:26 595
原创 MySQL 存储原理解析
逻辑架构层级MySQL 的逻辑架构分为多个层次,从上层的应用程序连接开始,往下依次是连接层、服务层、引擎层和存储层。连接层负责处理客户端的连接请求,接收和验证用户的连接信息,为后续的交互搭建通信通道。服务层涵盖了 SQL 解析、优化以及执行计划的生成等关键功能,它将用户输入的 SQL 语句进行剖析,尝试理解查询意图,并运用各种优化策略生成最优的执行方案。
2024-12-28 16:10:50 803
原创 机器学习之数据分析及特征工程详细分析过程
在当今的科技时代,机器学习已经成为推动各个领域发展的核心力量,从医疗诊断到金融风控,从智能交通到电商推荐,其应用无处不在。而在机器学习的整个流程中,数据分析与特征工程扮演着举足轻重的角色,它们直接关系到模型的性能、准确性以及最终的应用效果。一个好的数据分析策略能够帮助我们深入理解数据背后的规律,发现潜在的问题;精心设计的特征工程则像是为模型打造精良的武器,让其在学习任务中更加得心应手。接下来,我们将开启一段深入的探索之旅,详细剖析机器学习中的这两个关键环节。
2024-12-27 21:04:57 1173
原创 天池工业蒸汽量预测教程
在现代工业生产中,蒸汽作为一种重要的能源载体,广泛应用于化工、制药、纺织、食品加工等众多领域。准确预测工业蒸汽量对于优化生产流程、提高能源利用效率、降低成本以及保障生产的稳定性具有至关重要的意义。天池举办的工业蒸汽量预测赛事,为数据科学家、工程师以及相关从业者提供了一个极具挑战性与实践价值的平台。通过参与该赛事,不仅能够提升自身在时间序列预测、机器学习以及工业数据分析等方面的技能,还能深入了解工业生产过程中的复杂关联性,为实际工业应用提供有力的数据支撑。
2024-12-26 21:16:46 786
原创 天池新人实战赛 O2O 优惠券使用预测教程
在当今数字化的商业时代,O2O(Online to Offline)模式蓬勃发展,线上线下的融合为消费者带来了全新的购物体验,同时也为商家提供了更多的营销机会。其中,优惠券作为一种常用的营销手段,能够有效地吸引顾客、提高复购率以及促进消费增长。然而,如何精准地预测消费者是否会使用优惠券,对于商家来说至关重要,这不仅关系到营销成本的控制,更关乎营销活动的成效。天池新人实战赛中的 O2O 优惠券使用预测项目,就为我们提供了一个深入探索该领域的绝佳机会。
2024-12-26 14:26:34 1616
原创 深度学习原理解析:开启智能之门的钥匙
在当今科技飞速发展的时代,深度学习宛如一颗璀璨的明星,照亮了人工智能领域前行的道路。从智能语音助手精准理解我们的指令,到图像识别技术在安防、医疗等领域的卓越表现,再到机器翻译让跨国交流几近无缝衔接,深度学习的应用无处不在,深刻改变着我们的生活与工作方式。然而,其背后蕴含的复杂原理却如同一座神秘的高山,等待着我们去攀登、去探索。本文将以详实的笔触,深入剖析深度学习的原理,带你领略这一前沿技术的魅力与奥秘,为你开启深度学习知识宝库的大门。
2024-12-25 11:17:25 541
原创 人工智能学习路线全解析
在当今数字化飞速发展的时代,人工智能(AI)无疑是最具变革性和影响力的技术领域之一。从智能语音助手为我们安排日常事务,到图像识别技术保障安防监控,再到自动驾驶汽车重塑交通出行,人工智能已经渗透到生活的方方面面。对于许多渴望踏入这个充满魅力领域的学习者来说,如何规划一条清晰、高效的学习路线成为了关键问题。本文将全方位、深入地为大家剖析人工智能的学习路线,涵盖基础学科、核心技术、实践项目以及进阶拓展等多个关键要点,助力大家开启人工智能的学习之旅。
2024-12-25 11:10:51 900
原创 大厂 Java 架构师面试题全解析
在竞争激烈的 Java 开发领域,想要晋升为架构师,面临的面试挑战不容小觑。大厂的面试官往往会从多个维度深入考察候选人的技术功底、架构设计能力、问题解决思维等。以下精心整理了 30 道大厂 Java 架构师面试题,助你一臂之力。
2024-12-21 23:02:43 1323
原创 如何提升 IT 技术领导能力
通过夯实技术根基,打造过硬的专业本领;以构建企业级电商平台为例,从前端用户界面设计涉及的 HTML、CSS、JavaScript 技术,到中间层的微服务架构、API 网关,再到后端数据库的选型(如 MySQL、MongoDB)及运维管理,梳理出完整的知识脉络,这样在面对复杂项目需求或技术决策时,能够迅速从知识体系中调取相关信息,综合权衡利弊,做出最优决策。比如,面对软件运行时的内存泄漏问题,凭借深厚的技术功底,从代码逻辑、内存管理机制入手,迅速制定解决方案,让团队成员信服,在关键时刻给予技术兜底保障。
2024-12-21 20:19:05 573
原创 Zookeeper常见面试题解析
通过对这些常见 Zookeeper 面试题的深入剖析,我们全方位了解了 Zookeeper 从基础概念、核心特性到应用实践、性能优化以及运维排查的知识要点。在面试中,面对此类问题,不仅要精准回答理论知识,更要结合实际项目经验阐述理解与运用,展现自己具备应对分布式系统复杂挑战的能力,从而在众多应聘者中脱颖而出,开启分布式技术领域的精彩职业旅程。
2024-12-21 17:03:23 956
原创 Zookeeper 底层原理解析
选举过程是一个多轮投票的过程,在每一轮投票中,节点根据收到的其他节点的选举信息,更新自己的投票策略,直到有一个节点获得超过半数节点的支持,成为新的领导者。C 的 zxid 为 10,服务器 ID 为 3。例如,在一个大规模的分布式消息队列系统中,生产者和消费者需要知道队列的名称和位置才能进行消息的发送和接收,利用 Zookeeper 的命名服务,创建如 “/queues/queue1” 这样的节点来表示队列,生产者和消费者通过访问 Zookeeper 来确定队列的存在和相关信息,确保了系统的有序运行。
2024-12-21 16:29:59 893
原创 机器学习之 KNN 算法
它的基本思想是根据数据点之间的距离来确定它们的相似性,并根据其最近的邻居的类别或数值来预测新数据点的类别或数值。KNN 算法是一种基于实例的学习算法,它不需要显式地学习一个模型,而是通过存储所有的训练数据,并在需要预测新数据点的类别或数值时,计算新数据点与训练数据点之间的距离,找到距离最近的 K 个邻居,然后根据这 K 个邻居的类别或数值来预测新数据点的类别或数值。K 值的选择对算法的性能有很大的影响。根据选择的 K 个最近邻居的类别或数值,采用多数表决或平均的方法来预测新数据点的类别或数值。
2024-12-20 11:28:27 1035
原创 Netty 常见面试题原理解析
Netty 作为一个强大的网络应用框架,在高性能网络应用开发中具有重要的地位。通过对 Netty 常见面试题的原理解析,我们可以更好地理解 Netty 的架构、原理和应用场景,为在实际项目中使用 Netty 提供了有力的支持。在实际应用中,我们需要根据具体的业务需求和性能要求,合理地选择和配置 Netty 的各种组件和参数,以实现高性能、高可靠性的网络应用程序。
2024-12-16 23:00:47 950
原创 Netty 常见面试题原理解析
Netty 是一个非常强大的网络应用程序框架,它具有高性能、易于使用、可扩展性强等优点。在面试中,Netty 经常成为热门话题,掌握 Netty 的原理和应用场景对于开发者来说非常重要。希望本文对大家有所帮助。
2024-12-16 20:10:26 1126
原创 Spring Cloud 限流、熔断、降级的区别及实现方式
在微服务架构中,Spring Cloud 提供了一系列的工具和技术来保障系统的稳定性和可靠性。其中,限流、熔断和降级是三个重要的概念,它们在不同的场景下发挥着关键作用。本文将详细介绍 Spring Cloud 中限流、熔断和降级的区别,并探讨它们的具体实现方式。除了使用 Hystrix 提供的降级功能外,还可以在 Spring Cloud 中自定义降级逻辑。可以通过实现 FallbackFactory 接口来创建自定义的降级方法。
2024-12-12 21:48:21 1423
原创 机器学习支持向量机(SVM)算法
支持向量机(Support Vector Machine,SVM)作为一种强大的监督学习算法,以其在分类和回归任务中的卓越性能而备受瞩目。SVM 具有良好的泛化能力,能够在小样本数据上取得出色的效果,并且对于高维数据和非线性问题也有有效的解决方案。本文将深入探讨支持向量机算法的原理,并结合实际案例展示其在不同领域的应用。支持向量机是一种强大的机器学习算法,具有出色的分类和回归能力。本文深入探讨了支持向量机算法的原理,包括线性可分问题、最大间隔超平面、对偶问题和核函数。
2024-12-12 19:55:33 2416
原创 MySQL 数据库底层原理解析
在实际应用中,我们需要根据具体的业务需求和数据库特点,选择合适的优化手段,不断进行调整和优化,以满足不断增长的业务需求。了解 MySQL 数据库的底层原理,有助于我们更好地进行性能优化,提高数据库的响应速度和吞吐量。如果使用的是 InnoDB 存储引擎,首先会在缓冲池中查找数据,如果缓冲池中没有,则从磁盘中读取数据页,并将其加载到缓冲池中。MySQL 支持多种存储引擎,不同的存储引擎具有不同的特点和适用场景。3、根据表的存储引擎,从缓存中查找是否有对应的查询结果。如果没有,则进入下一步。
2024-12-10 20:02:14 808
原创 Java 架构师面试题解析(2024 年版)
分布式事务是指在分布式系统中,涉及多个节点的事务操作。由于分布式系统的复杂性,传统的单机事务处理方式已经不能满足需求,需要采用专门的分布式事务解决方案。两阶段提交(2PC)准备阶段:事务协调者向所有参与者发送准备请求,参与者执行事务操作,但不提交,然后向协调者回复是否准备成功。提交阶段:如果所有参与者都回复准备成功,协调者向所有参与者发送提交请求,参与者提交事务;否则,协调者向所有参与者发送回滚请求,参与者回滚事务。优点:实现简单,对事务的强一致性有较好的保证。
2024-12-10 12:26:09 1199
原创 人工智能学习路线详细规划
人工智能是一个充满挑战和机遇的领域,学习人工智能需要有系统的规划和持续的努力。本文介绍了人工智能的学习路线,包括基础阶段、机器学习阶段、深度学习阶段、特定领域学习阶段和持续学习阶段,并推荐了一些相关的学习书籍和资源。希望本文能够对大家的人工智能学习之路有所帮助。在学习过程中,要注重理论与实践相结合,多动手实践,不断积累经验,才能在人工智能领域取得更好的成绩。
2024-12-07 20:27:32 863
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人