洛谷P4035 [JSOI2008]球形空间产生器

思路:高斯消元
把所有已知点列出 可以得到n+1个方程
形如
$ (a_1-A)^2 +(b_1-B)^2 + ... +(n_1-N)^2 = dis $

$ (a_2-A)^2 +(b_2-B)^2 + ... +(n_2-N)^2 = dis $

$ (a_3-A)^2 +(b_3-B)^2 + ... +(n_3-N)^2 = dis $

...

其中 dis是一个定值 即每个点到球心的距离,A、B、C...为所求坐标
把这n+1个方程每相邻的两个方程相减 移项 可得到n个一次方程
形如
$ 2 (a_2-a_1) A + 2 (b_2-b_1) B + ... + 2 (n_2-n_1) N = (a_2)^2 - (a_1)^2 + (b_2)^2 - (b_1)^2 + ... + (n_2)^2 - (n_1)^2 $

$ 2 (a_3-a_2) A + 2 (b_3-b_2) B + ... + 2 (n_3-n_2) N = (a_3)^2 - (a_2)^2 + (b_3)^2 - (b_2)^2 + ... + (n_3)^2 - (n_2)^2 $

...

此时,未知数都在等式左边,等式右边为常量(通过输入的值计算),高斯消元解方程组即可
题目中确保方程有唯一解 不用判无解

#include <bits/stdc++.h>
using namespace std;
const int maxn = 20;
const double eps = 1e-8;
typedef double Matrix[maxn][maxn];
double tmp[maxn][maxn];
Matrix A;
int n;
void Gauss(Matrix a) {
    for(int i=1,r; i<=n; ++i) {
        r = i;
        for(int j = i + 1; j <= n; ++j) if(fabs(a[j][i]) > fabs(a[r][i])) r = j;
        if(r != i) swap(a[i],a[r]);
        for(int k = 1; k <= n; ++ k) { if(k != i)
            for(int j = n + 1; j >= 1; -- j)
                a[k][j]-=a[k][i] / a[i][i] * a[i][j];
        }
    }
}
int main() {
    scanf("%d",&n);
    for(int i = 1; i <= n + 1; ++ i)
        for(int j = 1; j <= n; ++ j)
            scanf("%lf",&tmp[i][j]);
    for(int i = 1; i <= n; ++ i)
        for(int j = 1; j <= n; ++ j)
            A[i][j]=(tmp[i+1][j]-tmp[i][j])*2.0,
                    A[i][n+1]+=tmp[i+1][j]*tmp[i+1][j]-tmp[i][j]*tmp[i][j];
    Gauss(A);
    for(int i = 1; i <= n; ++ i) printf("%.3lf ",A[i][n+1]/A[i][i]);
    return 0;
}

转载于:https://www.cnblogs.com/yu-xing/p/10358431.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
思路1(洛谷题解) 设n维球体为α,其半径为r(注意,这是一个设而不求。),其球心X的坐标为(x_1,x_2,…,x_n )。∀A_1,A_2,…,A_(n+1)∈α,点A_i (1≤i≤n+1)坐标为(a_((i,1) ),a_((i,2) ),…,a_((i,n) ) )。由n维球体的定义,得方程组: {█((a_((1,1) )-x_1 )^2+(a_((1,2) )-x_2 )^2+⋯+(a_((1,n) )-x_n )^2=r^2@(a_((2,1) )-x_1 )^2+(a_((2,2) )-x_2 )^2+⋯+(a_((2,n) )-x_n )^2=r^2@⋮@(a_((n+1,1) )-x_1 )^2+(a_((n+1,2) )-x_2 )^2+⋯+(a_((n+1,n) )-x_n )^2=r^2 )┤. 从上往下,将第1个方程与第2个方程相减,将第2个方程与第3个方程相减,……,将第n个方程与第(n+1)个方程相减,得: {█(∑_(i=1)^n▒2(a_((1,i) )-a_((2,i) ) ) x_i=∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @∑_(i=1)^n▒2(a_((2,i) )-a_((3,i) ) ) x_i=∑_(i=1)^n▒(a_((2,i) )+a_((3,i) ) )(a_((2,i) )-a_((3,i) ) ) @⋮@∑_(i=1)^n▒2(a_((n,i) )-a_((n+1,i) ) ) x_i=∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n,i) ) ) )┤. 这是一个线性方程组,其增广矩阵为[■(2(a_((1,1) )-a_((2,1) ) )&⋯&2(a_((1,n) )-a_((2,n) ) )&∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @⋮&⋱&⋮&⋮@2(a_((n,1) )-a_((n+1,1) ) )&⋯&2(a_((n,n) )-a_((n+1,n) ) )&∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n+1,i) ) ) )],可用列主元高斯消元法求得其解。 思路2 n(n∈N_+ )维空间中到两个互不重合的点的距离相等的点的集合叫做这两个点的垂直平分图形。 求n维空间中两点的垂直平分图形的方程的基本思路: 设点A坐标为(a_1,a_2,…,a_n ),点B的坐标为(b_1,b_2,…,b_n ),A≠B,它们的垂直平分图形为β。取∀X∈β,其坐标为(x_1,x_2,…,x_n )。 由垂直平分图形的意义,得: |AX|=|BX|⇔|AX|^2=|BX|^2⇔∑_(i=1)^n▒(a_i-x_i )^2 =∑_(i=1)^n▒(b_i-x_i )^2 ⇔(∑_(i=1)^n▒〖a_i〗^2 )-2(∑_(i=1)^n▒〖a_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )=(∑_(i=1)^n▒〖b_i〗^2 )-2(∑_(i=1)^n▒〖b_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )⇔∑_(i=1)^n▒〖2(a_i-b_i ) x_i 〗=∑_(i=1)^n▒(a_i+b_i )(a_i-b_i ) . 最后出来的这个等式就是垂直平分图形的方程。 回到题目中,对于∀A_1,A_2,…,A_(n+1)∈α,取A_1,A_2为一对,A_2,A_3为一对,……,A_n,A_(n+1)为一对代入垂直平分图形的方程中,惊奇地发现得到的线性方程组与思路1中相同,接下来的解法也相同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值