bzoj 1013 洛谷 P4035 [JSOI2008]球形空间产生器 高斯消元

题目描述
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。
现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
输入输出格式
输入格式:

第一行是一个整数n(1<=N=10)。
接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。

输出格式:

有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

输入输出样例
输入样例#1:
2
0.0 0.0
-1.0 1.0
1.0 0.0
输出样例#1:
0.500 1.500

提示:我删掉了最后的解释(有点丑),可以去看原题。

分析:反正就是找一个点,到每个点的距离相等,这里的距离指欧几里得距离。可以列出n+1个方程,形如,dis(i,i+1)=C,C为常数。然后两两相减得到n个n元一次方程组,然后就是高斯消元板题。其实在几何意义上想,两个点直接存在垂直平分线到两点距离相等,而每条垂直平分线都是一个n元一次的方程,联立方程相当于解一个n元一次方程组,这两个方程组,本质时一样的。

注意:在bzoj上提交,输出最后一个答案后要换行。

代码:

/**************************************************************
    Problem: 1013
    User: beginend
    Language: C++
    Result: Accepted
    Time:0 ms
    Memory:1296 kb
****************************************************************/
 
#include <iostream>
#include <cstdio>
#include <cmath>
 
int const maxn=20;
using namespace std;
 
int n,m,i,j,k;
double a[maxn][maxn],b[maxn],c[maxn][maxn];
 
void guass()
{
    for (i=1;i<=n;i++)
    {
        int ma=abs(c[i][i]);
        k=i;
        for (j=i+1;j<=n;j++) if (abs(a[j][i])>ma) k=j;
        for (j=1;j<=n;j++) swap(a[i][j],a[k][j]);
        for (j=1;j<=n;j++)
        {
            if (i==j) continue;
            double rate=c[j][i]/c[i][i];
            for (k=i;k<=n;k++) c[j][k]-=c[i][k]*rate;
            b[j]-=rate*b[i];
        }
    }
}
  
int main()
{
    scanf("%d",&n);
    for (i=1;i<=n+1;i++)
     for (j=1;j<=n;j++)
      scanf("%lf",&a[i][j]);
    for (i=1;i<=n;i++)
     for (j=1;j<=n;j++)
     {
        c[i][j]=2*(a[i][j]-a[i+1][j]);
        b[i]+=a[i][j]*a[i][j]-a[i+1][j]*a[i+1][j];
     }   
    guass();   
    for (i=1;i<n;i++) printf("%.3lf ",b[i]/c[i][i]);
    printf("%.3lf\n",b[n]/c[n][n]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值