题目描述
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。
现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
输入输出格式
输入格式:
第一行是一个整数n(1<=N=10)。
接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。
输出格式:
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
输入输出样例
输入样例#1:
2
0.0 0.0
-1.0 1.0
1.0 0.0
输出样例#1:
0.500 1.500
提示:我删掉了最后的解释(有点丑),可以去看原题。
分析:反正就是找一个点,到每个点的距离相等,这里的距离指欧几里得距离。可以列出n+1个方程,形如,dis(i,i+1)=C,C为常数。然后两两相减得到n个n元一次方程组,然后就是高斯消元板题。其实在几何意义上想,两个点直接存在垂直平分线到两点距离相等,而每条垂直平分线都是一个n元一次的方程,联立方程相当于解一个n元一次方程组,这两个方程组,本质时一样的。
注意:在bzoj上提交,输出最后一个答案后要换行。
代码:
/**************************************************************
Problem: 1013
User: beginend
Language: C++
Result: Accepted
Time:0 ms
Memory:1296 kb
****************************************************************/
#include <iostream>
#include <cstdio>
#include <cmath>
int const maxn=20;
using namespace std;
int n,m,i,j,k;
double a[maxn][maxn],b[maxn],c[maxn][maxn];
void guass()
{
for (i=1;i<=n;i++)
{
int ma=abs(c[i][i]);
k=i;
for (j=i+1;j<=n;j++) if (abs(a[j][i])>ma) k=j;
for (j=1;j<=n;j++) swap(a[i][j],a[k][j]);
for (j=1;j<=n;j++)
{
if (i==j) continue;
double rate=c[j][i]/c[i][i];
for (k=i;k<=n;k++) c[j][k]-=c[i][k]*rate;
b[j]-=rate*b[i];
}
}
}
int main()
{
scanf("%d",&n);
for (i=1;i<=n+1;i++)
for (j=1;j<=n;j++)
scanf("%lf",&a[i][j]);
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
{
c[i][j]=2*(a[i][j]-a[i+1][j]);
b[i]+=a[i][j]*a[i][j]-a[i+1][j]*a[i+1][j];
}
guass();
for (i=1;i<n;i++) printf("%.3lf ",b[i]/c[i][i]);
printf("%.3lf\n",b[n]/c[n][n]);
}