题目描述
给定一个长度为N的序列a,对于每一个数都可选或不选,把选出的数有序组成一个新的序列b,使b序列的“和谐数”最大。
一个序列的和谐数如下定义:对于位置i,如果第奇数次选的则加上bi,偶数次选的则减去bi
注意:新的序列b必须是从左到右依次在a序列选择的,即不能打乱顺序。
一个序列的和谐数如下定义:对于位置i,如果第奇数次选的则加上bi,偶数次选的则减去bi
注意:新的序列b必须是从左到右依次在a序列选择的,即不能打乱顺序。
输入
输入的第一行是一个n,第二行为n个数,即序列a
输出
输出一行一个整数,即表示最大的和谐数
样例输入
5 1 2 3 4 5 Sample Input2 6 1 3 5 4 6 8
样例输出
5 Sample Output2 9
数据范围限制
对于20%的数据,1<=n<=20
对于50%的数据,1<=n<=1000
对于50%的数据,1<=n<=1000
对于100%的数据,1<=n<=10000000,1<=Ai<=100
分析
设f[0,i]表示当前这一位是减ai的最大值,得f[0,i]:=max(f[0,i-1],f[1,i-1]-a[i]);
设f[1,i]表示当前这一位是加ai的最大值,得f[1,i]:=max(f[1,i-1],f[0,i-1]+a[i]);
最后输出max(f[0,n],f[1,n])
程序:
uses math;
var
n,i:longint;
a:array[0..10000000]of longint;
f:array[0..1,0..10000000]of longint;
begin
readln(n);
for i:=1 to n do
read(a[i]);
for i:=1 to n do
begin
f[0,i]:=max(f[0,i-1],f[1,i-1]-a[i]);
f[1,i]:=max(f[1,i-1],f[0,i-1]+a[i]);
end;
write(max(f[0,n],f[1,n]));
end.