题目描述
KC邀请他的两个小弟K和C玩起了数字游戏。游戏是K和C轮流操作进行的,K为先手。KC会先给定一个数字Q,每次操作玩家必须写出当前数字的一个因数来代替当前数字,但是这个因数不能是1和它本身。例如当前数字为6,那么可以用2,3来代替,但是1和6就不行。现在规定第一个没有数字可以写出的玩家为胜者。K在已知Q的情况,想知道自己作为先手能不能胜利,若能胜利,那么第一次写出的可以制胜的最小数字是多少呢?整个游戏过程我们认为K和C用的都是最优策略。
输入
只包括一个正整数Q
输出
第一行是1或2,1表示K能胜利,2表示C能胜利。
若K能胜利,则在第二行输出第一次写出的可以制胜的最小数字,若是第一次就无法写出数字,则认为第一次写出的可以制胜的最小数字为0。
说明:若C能胜利,不用输出第二行,输出2即可。
样例输入
6
样例输出
2
数据范围限制
对于30%的数据,Q<=50; 对于100%的数据,Q<=10^13。
分析
这道题分为三种情况:
1:n为质数,writeln(1); write(0);
2:n为两个质数的乘积(两个质数可以相等),write(2)
3:n很复杂,则输出n最小的两个质因数(可以相等,即n=k*t*t, t为此质因数)的积
程序:
var
i:longint;
j,k,n,m,ans,num:int64;
procedure aa;
begin
readln(n);
m:=n;
for i:=2 to trunc(sqrt(n)-0.1) do
while n mod i=0 do
begin
n:=n div i;
num:=num+1;
end;
if trunc(sqrt(n))=sqrt(n) then inc(num);
n:=m;
if num=0 then
begin
writeln(1);
writeln(0);
halt
end else
if num=1 then writeln(2) else
begin
ans:=1;
for i:=2 to trunc(sqrt(n)) do
begin
k:=0;
while n mod i=0 do
begin
inc(k);
n:=n div i;
ans:=ans*i;
if ans<>i then
begin
writeln(1);
writeln(ans);
halt;
end;
end;
end;
end;
end;
begin
assign(input,'num.in');
reset(input);
assign(output,'num.out');
rewrite(output);
aa;
close(input);
close(output);
end.