Description
休息的时候,可以放松放松浑身的肌肉,打扫打扫卫生,感觉很舒服。在某一天,某LMZ 开始整理他那书架。已知他的书有n 本,从左到右按顺序排列。他想把书从矮到高排好序,而每一本书都有一个独一无二的高度Hi。他排序的方法是:每一次将所有的书划分为尽量少的连续部分,使得每一部分的书的高度都是单调下降,然后将其中所有不少于2 本书的区间全部翻转。重复执行以上操作,最后使得书的高度全部单调上升。可是毕竟是休息时间,LMZ 不想花太多时间在给书排序这种事上面。因此他划分并翻转完第一次书之后,他想计算,他一共执行了多少次翻转操作才能把所有的书排好序。LMZ 惊奇地发现,第一次排序之前,他第一次划分出来的所有区间的长度都是偶数。
Input
第一行一个正整数n, 为书的总数。
接下来一行n个数,第i个正整数Hi,为第i 本书的高度。
Output
仅一个整数,为LMZ 需要做的翻转操作的次数。
Sample Input
6
5 3 2 1 6 4
Sample Output
3
【样例解释】
第一次划分之后,翻转(5,3,2,1),(6,4)。之后,书的高度为1 2 3 5 4 6,然后便是翻转(5,4)即可。
Data Constraint
对于10%的数据:n<=50
对于40%的数据:n<=3000
对于100%的数据:1<=n<=100000, 1<=Hi<=n
.
.
.
.
.
分析
找出所有连续的单调下降序列,把它们全部翻转过来,每翻转一个序列,ans++,做完后,此为第一次交换。
第一次交换后,剩下的就只能两两交换,所以只要求逆序对就好了。
.
.
.
.
.
程序:
#include<iostream>
#include<algorithm>
using namespace std;
long long a[100001],b[100001],n,w,t[100001],ans=0;
void merge(long long a[],int l,int r)
{
if(l==r) return;
int mid=(l+r)/2;
merge(a,l,mid);
merge(a,mid+1,r);
int i=l,j=mid+1,p=l;
while (i<=mid&&j<=r)
{
if (a[i]>a[j])
{
t[p++]=a[j++];
ans+=mid-i+1;
}
else
t[p++]=a[i++];
}
while(i<=mid) t[p++]=a[i++];
while(j<=r) t[p++]=a[j++];
for(i=l;i<=r;i++)
a[i]=t[i];
}
void kp(int l,int r)
{
if (l>=r) return;
int i=l,j=r,mid=a[(l+r)/2];
do
{
while (a[i]<mid) i++;
while (a[j]>mid) j--;
if (i<=j)
{
swap(a[i],a[j]);
i++;
j--;
}
}while (i<=j);
}
int check()
{
for (int i=2;i<=n;i++)
if (a[i]<a[i-1])
{
w=i;
return 1;
}
return 0;
}
int main()
{
cin>>n;
int tot=1;
b[tot]=1;
cin>>a[1];
for (int i=2;i<=n;i++)
{
cin>>a[i];
if (a[i]>a[i-1])
{
tot++;
b[tot]=i;
}
}
tot++;
b[tot]=n;
for (int i=2;i<=tot;i++)
{
kp(b[i-1],b[i]);
ans++;
}
merge(a,1,n);
cout<<ans;
}