题意
设有一个n×m(小于100)的方格(如图所示),在方格中去掉某些点,方格中的数字代表距离(为小于100的数,如果为0表示去掉的点),试找出一条从A(左上角)到B(右下角)的路径,经过的距离和为最小(此时称为最小代价),从A出发的方向只能向右,或者向下。
分析
k[i,j]:=a[i,j]+max(k[i,j-1]+a[i,j],k[i-1,j]+a[i,j]);
结果=k[n,m]-a[n,m]
var
n,m,i,j:longint;
d,k,a:array[0..100,0..100]of longint;
f:array[0..100,0..100]of boolean;
procedure dg(x,y:longint);
begin
if (x=1)and(y=1) then
begin
write('(',x,',',y,')');
exit;
end;
if d[x,y]=1 then dg(x,y-1) else dg(x-1,y);
write('->(',x,',',y,')');
end;
begin
readln(n,m);
fillchar(f,sizeof(f),false);
for i:=1 to n do
begin
for j:=1 to m do
begin
read(a[i,j]);
if a[i,j]=0 then f[i,j]:=true;
k[i,j]:=maxlongint div 2;
end;
readln;
end;
for i:=1 to m do
if f[1,i]=false then
begin
k[1,i]:=k[1,i-1]+a[1,i];
d[1,i]:=1;
end else break;
for i:=2 to n do
if f[i,1]=false then
begin
k[i,1]:=k[i-1,1]+a[i,1];
d[i,1]:=2;
end else break;
for i:=2 to n do
begin
for j:=2 to m do
begin
if (f[i,j]=false) then
if ((k[i-1,j]+a[i,j])<(k[i,j-1]+a[i,j]))and(f[i-1,j]=false) then
begin
k[i,j]:=k[i-1,j]+a[i,j];
d[i,j]:=2;
end else
if (f[i,j-1]=false) then
begin
k[i,j]:=k[i,j-1]+a[i,j];
d[i,j]:=1;
end;
end;
end;
dg(n,m);
writeln;
write(k[n,m]-a[n,m]);
end.