线性基学习笔记

线性基专题学习

(仅以此篇表愚见)


引入:最大异或和

(笔者希望你在看这个之前学过了高斯消元)

我们先把线性基放到一边,如何用高斯消元解决呢?

(下面的陈述可能有些问题,某些细节和实现希望读者自己想一下)

---->从高到低确定每一位是否能选,即设这一位方程的右边为1,解当前的方程组判断是否有解,一共是解60次方程组\(O(n \cdot 60^3)\)

---->优化:保证消元时不将之前能异或得到的数重新列方程,这样最多只有60个数,即\(O(60^4)\)

---->线性基基本上就是实现了这种优化,并将其广泛应用了

\[ \ \]

\[ \ \]


一、 What's 线性基?

线性基就是用很少的数做基底 ,通过异或后能够与原数组的数一一对应

通过它们之间的互相异或也就能够得到原数组的异或情况

这种基底的本质就是实现了:若之前出现的数的组合能够得到自己,就把自己扔掉(就是引子讲的优化)

所以其实线性基是最大"独立数"集,用它也可以求出序列不同异或和的个数

\[ \ \]

\[ \ \]


二、一些性质

设线性基中的数为\(d[i]\)

这里为了方便联系代码实现,我们设二进制位从第0位开始

​ 1.\(d[i]\)数组不一定是满的

​ 2.线性基中 , 如果第\(i\)个数\(d[i]\)存在,那么\(d[i]\)的第\(i\)位一定是其最高位(不为0)

​ 3.线性基中的元素之间异或不会得到0

​ 4.线性基的元素是在保证能够满足对应关系情况个数最少的

\[ \ \]

\[ \ \]


三、一些应用

插入线性基

bool Insert(ll x){
    for(int i=60;i>=0;i--) if(x&(1ll<<i)) {
        if(d[i]) x^=d[i];
        else {
            d[i]=x;
            break;
        }
    }
}

插入的两种决策

\(x\)的第\(i\)位大于\(0\)

---->如果第\(i\)还没有存下的\(1\),就把当前数存下来

---->否则这一位的\(1\)要用原来的\(d[i]\)异或掉

\[ \ \]

\[ \ \]


应用

1.最大异或和

又回到了引子

首先当然是预处理了线性基,但是我们这里不用真的把高斯消元搬出来了

由于通过d[i]数组的异或我们可以得到原数组的所有可能异或答案,所以直接在d[i]数组上贪心就好了

贪心策略还是比较明显的,如果这一位有\(d[i]\),那么一定要拿

你会发现\(d[i]\)会与之后的\(d[j]\)冲突(因为d[i]后面的1会与d[j]异或抵消)

这时我们有两种解决方法

->

    ll ans=0;
    drep(i,60,0) if((ans^d[i])>ans) ans^=d[i];

简单粗暴

但其实还有一种更加精巧的办法

void ReBuild() {
    cnt=0;
    drep(i,60,0) if(d[i]) drep(j,i-1,0) if(d[i]&(1ll<<j)) d[i]^=d[j];
    rep(i,0,60) if(d[i]) t[cnt++]=d[i];
}

事实上,可以看出的是,\(ReBuild\)之后,每一个\(d[i]\)都不存在了与后面\(d[j]\)冲突的\(1\)

所以这其实也就是类似于高斯消元的思想

这样就保证了每个\(d[i]\)每个位上都不会有冲突并且满足一一对应的性质,可以直接进行按位贪心了

\[ \ \]

\[ \ \]


2.元素

题意:给定一些数及其权值,求最大独立集的最大权值和

按权值排序,能取就取,贪心即可,这里我们给出简略证明策略正确性

假设保证权值递减,若当前集合中已有的数为\(a,b,c,d,e\),现加入\(x\)\(a,b\)产生冲突,即\(a \ xor \ b \ xor \ x=0\),这时取\(x\)一定不会更优

其实很显然,因为如果取了\(x\),替换\(a,b\)中的一个,此时仍能由异或产生\(a,b,x\)中的任意一个,总体上独立集的性质并未发生改变,但总权值减少了

证毕

int n;
ll d[N];
pair <int,ll> P[N];
bool Ins(ll x){
    drep(i,60,0) if(x&(1ll<<i)) {
        if(d[i]) x^=d[i];
        else {
            d[i]=x;
            break;
        }
    }
    return x>0;//判断是否产生冲突
}
int main(){
    rep(i,1,n=rd()) scanf("%lld%d",&P[i].second,&P[i].first);
    sort(P+1,P+n+1);
    int ans=0;
    drep(i,n,1) if(Ins(P[i].second)) ans+=P[i].first;
    printf("%lld\n",ans);
}

\[ \ \]

\[ \ \]


3.第k小异或和

讲这种应用之前我们先来细算不同异或和的个数:

设线性基元素的个数为cnt---->显然就是\(2^{cnt}\),即选或不选,且一定不会重复

这里的第k小是不同的异或答案情况下

这里我们先进行\(ReBuild\), 保证不冲突

然后,对于每一位的数(从小到大枚举),如果这一位存在着\(d[i]\),那么答案一定会是双倍于之前

\(k\)按照二进制位分解后,对于每一位\(1\)取出答案异或即可

细节 :前面的定义里已经讲到,线性基的答案是异或不出\(0\)的,所以对于答案来说,如果存在\(0\)的情况,k要-1

(如何判断0?插入时返回的值就是)

ll d[70],t[70],cnt;

bool Ins(ll x){
    drep(i,60,0) if(x&(1ll<<i)) {
        if(d[i]) x^=d[i];
        else 
            d[i]=x;
            break;
        }
    }
    return x>0;
}

void ReBuild() {
    cnt=0;
    drep(i,60,0) if(d[i]) drep(j,i-1,0) if(d[i]&(1ll<<j)) d[i]^=d[j];
    rep(i,0,60) if(d[i]) t[cnt++]=d[i];//将大于0的d[i]取出
}

ll Work(ll k){
    if(cnt<n) k--;
    if(k>=(1ll<<cnt)) return -1;
    ll res=0;
    rep(i,0,cnt-1) if(k&(1ll<<i)) res^=t[i];//按照二进制位取出
    return res;
}

void Solve(){
    memset(d,0,sizeof d);
    rep(i,1,n=rd()) Ins(rd());
    ReBuild();
    rep(ttt,1,rd()) printf("%lld\n",Work(rd()));
}

另解->可以不用\(ReBuild\)

直接在找答案时保证该有的位有1,不该有的位没有一就行了

ll Work(ll k){
    if(cnt<n) k--;
    if(k>=(1ll<<cnt)) return -1;
    ll res=0;
    drep(i,cnt-1,0) {
        bool f1=(k&(1ll<<i)),f2=(res&(1ll<<p[i]));
        if(f1^f2) res^=t[i];
        //f1^f2实际上是((f1&&!f2)||(!f1||f2))
    }
    return res;
}
void Solve(){
    memset(d,0,sizeof d);
    rep(i,1,n=rd()) Ins(rd());
    cnt=0;
    rep(i,0,60) if(d[i]) p[cnt]=i,t[cnt++]=d[i];
    rep(ttt,1,rd()) printf("%lld\n",Work(rd()));
}

\[\ \]

\[\ \]


4.Ivan and Burgers

至少要写了这道题,才算会了一点线性基

这题我们直接离线询问,思考,对于一段前缀\(a[\lbrace 1...r \rbrace ]\)的线性基,如何查询任意一个区间\(l_x,r\)的答案?

我们考虑线性基中的元素冲突时,应该取最大的一个,替换最小的一个,这样就保证了贡献的最优性,即可完成查询!

(仿佛很简单)

如何实现呢?我这里有一种暴力的做法

int d[30],t[30];
inline void Insert(int x,int id){
    drep(i,20,0) if(x&(1<<i)) {
        if(d[i]) x^=d[i];
        else {
            d[i]=x;
            t[i]=id;
            break;
        }
    }
}

int tmp[N];
inline void Ins(int x,int id){
    int mi=1e9,p=-1;
    drep(i,20,0) if(x&(1<<i)) {
        if(d[i]) {
            x^=d[i];
            if(t[i]<mi) mi=t[i],p=i;
        } else {
            d[i]=x,t[i]=id;
            break;
        }
    }
    int cnt=0;
    if(!x&&~p) t[p]=id;
    drep(j,20,0) if(d[j]) tmp[++cnt]=t[j],d[j]=0;
    sort(tmp+1,tmp+cnt+1,greater<int>());
    rep(j,1,cnt) Insert(a[tmp[j]],tmp[j]);
}

是不是很暴力。。。

其实这个复杂度可以再优化,但是笔者就不多讲了

而且这个完全可以在线做的。。。

\[ \ \]

\[ \ \]


5.路径最大异或和

注意这题问的是1-n的路径

首先这题我们要想出一个性质

任何一条路径的异或值都可以随意地与任意多个环相接!!!

(自己理解一下,很简单)

所以就是处理出环值,插入线性基,对1-n路径的异或值跑最大值就好了。。。


int n,m;
struct Edge{
    int to,nxt;
    ll w;
}e[E<<1];
int head[N],ecnt;
void AddEdge(int u,int v,ll w){
    e[++ecnt]=(Edge){v,head[u],w};
    head[u]=ecnt;
}
#define erep(u,i) for(int i=head[u];i;i=e[i].nxt)
int from[E],to[E];
ll len[E];
ll dis[N];
int vis[N];
void dfs(int u){
    vis[u]=1;
    erep(u,i){
        int v=e[i].to;
        if(vis[v]) continue;
        dis[v]=dis[u]^e[i].w;
        dfs(v);
    }
}

ll d[70];
bool Ins(ll x){
    drep(i,60,0) if(x&(1ll<<i)) {
        if(d[i]) x^=d[i];
        else {
            d[i]=x;
            return true;
        }
    }
    return false;
}

int main() {
    n=rd(),m=rd();
    rep(i,1,m) {
        int u=rd(),v=rd();
        ll w;scanf("%lld",&w);
        AddEdge(u,v,w);
        AddEdge(to[i]=v,from[i]=u,len[i]=w);
    }
    dfs(1);
    rep(i,1,m) Ins(len[i]^dis[from[i]]^dis[to[i]]);
    ll Ans=dis[n];
    drep(i,60,0) if((Ans^d[i])>Ans) Ans^=d[i];
    printf("%lld\n",Ans);
}

6.Xor-matic Number of the Graph-CodeForces - 724G

直接看我的另一篇题解吧

----->传送门

转载于:https://www.cnblogs.com/chasedeath/p/11276708.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值