1030: 素数槽
Description
处于相邻的两个素数p和p + n之间的n - 1个连续的合数所组成的序列我们将其称为长度为n的素数槽。例如,‹24, 25, 26, 27, 28›是处于素数23和素数29之间的一个长度为6的素数槽。
你的任务就是写一个程序来计算包含整数k的素数槽的长度。如果k本身就是素数,那么认为包含k的素数槽的长度为0。
Input
第一行是一个数字n,表示需要测试的数据的个数。后面有n行,每行是一个正整数k, k大于1并且小于或等于的第十万个素数(也就是1299709)。
Output
对于输入部分输入的每一个k,都对应输出一个非负整数,表示包含k的素数槽的长度,每个非负整数占一行。
Sample Input
5 10 11 27 2 492170
Sample Output
4 0 6 0 114
解题思路:题目说明了最大素数,,那么可以先把素数筛选出来,然后进行查找,如果vis[k]=0,那么k是素数;否则,往k的左右去找最近的素数。
一个高效的素数筛选法:Eratosthenes筛法
模板:
const int maxn=100000001;
int vis[maxn];
int main()
{
int m=(int)sqrt(maxn+0.5);
for(int i = 2; i <= m; i++)///素数筛选
{
if(vis[i]) continue;
for(int j = i*i; j <= maxn; j+=i)
vis[j]=1;
}
代码如下:
#include <stdio.h>
#include <math.h>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1300000;
int vis[maxn];
int main()
{
int m=(int)sqrt(maxn+0.5);
for(int i = 2; i <= m; i++)///素数筛选
{
if(vis[i]) continue;
for(int j = i*i; j <= maxn; j+=i)
vis[j]=1;
}
int n,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int x=0,y=0;
if(vis[n]==0) printf("0\n");
else {
for(int i=n-1; i>=2;i--)
if(vis[i]==0){x=i; break;}
for(int i=n+1; i<maxn;i++)
if(vis[i]==0){y=i; break;}
printf("%d\n",y-x);
}
}
return 0;
}