CodeForces 665E Beautiful Subarrays 字典树

本文介绍了一种使用字典树解决BeautifulSubarrays问题的方法。通过将数字转化为二进制并利用字典树进行维护,使得问题变得容易解决。代码中详细展示了如何构建字典树,并通过遍历数组来更新字典树和计算答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Beautiful Subarrays   

题解:

把数字转化成2进制之后,用字典树去维护。

 

想到字典树之后就应该是一道很容易写的题目了。

 

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod =  (int)1e9+7;
const int N = 1e6 + 100;
int n, k;
int a[N];
int s[30], ss[30];
int tree[1<<24][2];
int cnt[1<<24];
int tot = 2;
void add(){
    int rt = 1;
    for(int i = 0; i < 30; ++i){
        int id = s[i];
        if(!tree[rt][id]) tree[rt][id] = ++tot;
        ++cnt[tree[rt][id]];
        rt = tree[rt][id];
    }
}
void add(int x){
    for(int i = 29; i >= 0; --i){
        s[i] =  + (x & 1);
        x >>= 1;
    }
    add();
}
LL ans = 0;
void Find(){
    int rt = 1;
    for(int i = 0; i < 30; ++i){
        if(!rt) return ;
        if(s[i] == 0 && ss[i] == 0){
//            cout << " *** " << endl;
            ans += cnt[tree[rt][1]];
            rt = tree[rt][0];
        }
        else if(s[i] == 0 && ss[i] == 1){
            rt = tree[rt][1];
        }
        else if(s[i] == 1 && ss[i] == 0){
//            cout << "??" << endl;
            ans += cnt[tree[rt][0]];
            rt = tree[rt][1];
        }
        else if(s[i] == 1 && ss[i] == 1){
            rt = tree[rt][0];
        }
//        cout << i << " " << ss[i] << " " <<ans << endl;
    }
    ans += cnt[rt];
}

int main(){
    scanf("%d%d", &n, &k);
    for(int i = 1; i <= n; ++i)
        scanf("%d", &a[i]);
    for(int i = 29; i >= 0; --i){
        ss[i] =  + (k & 1);
        k >>= 1;
    }
    add(0);
    for(int i = 1; i <= n; ++i){
        a[i] ^= a[i-1];
        add(a[i]);
        Find();
    }
    cout << ans << endl;
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/MingSD/p/10894923.html

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值