引言
随着人工智能技术的快速发展,大语言模型(LLM)已成为银行业数字化转型的核心驱动力。作为高性能开源大模型的代表,DeepSeek 凭借其低成本、高推理效率及跨场景适配能力,正加速渗透至银行核心业务场景。据不完全统计,截至 2025 年 3 月,已有包括国有大行、股份制银行及城商行在内的 20 余家银行完成 DeepSeek 本地化部署,覆盖精准营销、智能风控、客户服务、投资决策等领域,推动银行业务效率提升与服务模式重塑。
内容 | 说明 | 链接 |
金融领域的应用 | 重点介绍了分析DeepSeek在金融行业的应用现状、典型案例及未来发展趋势。 | DeepSeek在金融行业应用_deepseek在金融行业的应用-CSDN博客 |
目录
一、核心应用场景与落地案例
1、智能风控与信贷审批
- 江苏银行:通过本地化部署 DeepSeek-VL2 多模态模型,实现智能合同质检与自动化估值对账。模型结合外部数据识别合同风险点,预警响应速度提升 20%,同时邮件分类、交易录入等流程自动化处理,每日节约人力成本超 9 小时。
- 建设银行:基于 DeepSeek-R1 开发的授信审批模型,可自动生成客户财务分析报告,耗时从数小时压缩至分钟级,并将风险识别准确率提升至 98.7%。
- 苏商银行:整合 DeepSeek 蒸馏技术,优化信贷风控与反欺诈模型,尽调报告生成效率提升 40%,欺诈风险标签准确率提高 35%。
- 工商银行:部署“工小审”风控助手,实现全流程智能化信贷审批,违