根据算数基本定理,一个合数可以分解成多个素数的乘积。
输入:
一个正整数
输出:
它的所有质因数
思路
2是最小的素数,所以从2开始,不断地用2去除正整数n,如果可以被除尽,那么输出质因数2,如果除不尽,2加1到3,再用3去除。直到最后n变成1了,则结束循环。
我之前有个顾虑就是在循环时如何保证当前的除数是素数?后来发现因为2是素数,所以如果n能被其他偶数整除,那么首先就会被除数2整除,并且往后我们会判断能否继续被2整除,只有当2除不尽时,除数才会开始递增。质因数分解中有一个规律:首先找出的质因数比后找出的质因数小。
C++代码实现:
#include <stdio.h>
int main()
{
int T, n;
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
// 从最小的素数2开始找
for (int i = 2; n != 1;) {
// 如果能整除,输出质因数
if (n % i == 0) {
printf("%d ", i);
n /= i;
// 否则递增
} else {
i++;
}
}
printf("\n");
}
return 0;
}